Supplementary information

Reversible Crystal Deformation of a Single-Crystal Host of Copper(II)1-Naphthoate—Pyrazine through Crystal Phase Transition Induced by Methanol Vapor Sorption

Yuichi Takasaki and Satoshi Takamizawa*

Department of Nanosystem Science; Graduate School of Nanobioscience; Yokohama

City University; 22-2 Seto; Kanazawa-ku, Yokohama, Kanagawa 236-0027; Japan

staka@yokohama-cu.ac.jp

Table of contents

(a)	Experimental information	S2
(b)	Crystallographic data and ortep drawings	S3
(c)	Connections of the crystal structures at the α/β interface	S4-S5

Other supplementary material

Video for crystal shape change of 1 observed under a microscope: Takamizawa_mov1.mov

(a) Experimental information

(Preparation of crystal)

Introducing pyrazine vapor (0.26 g, 3.3 mmol) into the methanol solution (60 mL) of copper(II) acetate monohydrate (0.102 g, 0.509 mmol) and 1-naphthoic acid (0.859 g, 4.99 mmol) gave blue green single crystals of **1** with a size of 100-500 μ m in 30.9% yield (70.1 mg).

(X-ray single crystal diffraction analysis)

Single-crystal X-ray structural analysis of **1** was performed at 90 K and 293 K on a Bruker Smart APEX CCD area diffractometer (Bruker AXS K.K.) with a nitrogen-flow temperature controller using graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å). Empirical absorption corrections were applied using the SADABS program. The structure was solved by direct methods (SHELXS-97) and refined by full-matrix least-squares calculations on F^2 (SHELXL-97) using the SHELX-TL program package. Non-hydrogen atoms were refined anisotropically; hydrogen atoms were fixed at calculated positions by riding model approximation.

(Gas adsorption measurement)

 CO_2 gas and MeOH vapor adsorption measurements were performed at 195 K and 293 K, respectively, on a Belsorp-max Measurement System (BEL JAPAN, Inc.) after drying the microcrystalline sample of 1 (13.80 mg for CO_2 gas adsorption and 24.70 mg for methanol vapor adsorption) at 373 K for 6 hours.

(b) Crystallographic data and ortep drawings

Crystal phase	1 •0.93(MeOH) (β)	1 (α)	1 (α)
Empirical formula	$C_{48.93}H_{35.72}Cu_2N_2O_{8.93}$	$C_{48}H_{32}Cu_2N_2O_8$	$C_{48}H_{32}Cu_2N_2O_8$
Crystal size /mm ³	$0.50 \times 0.40 \times 0.10$	0.50×0.30×0.10	0.78×0.12×0.10
М	921.69	891.84	891.84
Crystal system	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
Τ /Κ	90	90	293
a /Å	10.7482(17)	10.4745(11)	10.6065(8)
b /Å	12.230(2)	11.6064(12)	11.6485(9)
c /Å	16.366(3)	17.0370(17)	17.4513(14)
α/deg	95.110(3)	97.583(2)	80.612(2)
β/deg	96.968(3)	104.918(2)	75.2150(10)
γ/deg	102.936(3)	90.081(2)	89.821(2)
V/Å ³	2066.2(3)	1982.5(4)	2055.1(3)
Z	2	2	2
D_{calcd} / Mg m ⁻³	1.482	1.494	1.441
μ (Mo K α) / mm ⁻¹	1.091	1.133	1.093
Reflections collected	10274	9616	10052
Independent reflections (R _{int})	8394(0.0306)	7440(0.0242)	6592(0.0259)
Goodness of fit	1.062	1.036	1.018
$R_1(I > 2\sigma \text{ (all data)})$	0.0580(0.0701)	0.0429(0.0623)	0.0509(0.0882)
$wR_2(I > 2\sigma \text{ (all data)})$	0.1598(0.1699)	0.1139(0.1264)	0.1365(0.1625)
Largest diff. peak (hole) /eÅ3	1.468(-1.016)	0.952(-0.757)	0.677(-0.596)

 Table S1. Crystallographic data of 1.0.93(MeOH) and 1.

Figure S1. Molecular structures of (a) **1**•0.93(MeOH) at 90 K, (b) **1** at 90 K, and (c) **1** at 293 K as ortep view at 50% probability level for the each ellipsoid. The methanol molecules in **1**•0.93(MeOH) were disordered.

Figure S2. Single crystal of (a) **1** (α phase) and (b) **1**•0.93(MeOH) (β phase) used in single-crystal X-ray diffraction measurements at 90 K.

(c) <u>Connections of the crystal structures at the α/β interface</u>

Figure S3. Crystal face indexing of **1** in α - β coexisting state at 293 K.

Figure S4. (a) Scheme for connections of α and β phases on the interface. (b-e) Pore structures viewed along the four arrows illustrated in Fig. S4a. (b) Cross section on $(100)_{\alpha}$ and $(100)_{\beta}$. (c), (d) Cross sections indicated as dotted squares in Fig. S4a, which are oriented perpendicular to $[00-1]_{\alpha}$ and $[0-1-1]_{\beta}$, respectively. (e) Cross section perpendicular to $(100)_{\alpha}$, $(100)_{\beta}$, and $(-12-6)_{\alpha}//(1-2-6)_{\beta}$. Each void space in the α and β phase was illustrated by Mercury software with a probe radius of 0.7 Å and grid spacing of 0.2 Å.