Supporting information

A new turn on Pd$^{2+}$-specific fluorescence probe and its use as an Imaging reagent for cellular uptake in Hct116 cells

Upendar Reddy G, Firoj Ali, Nandaraj Taye, Samit Chattopadhyay,* Amitava Das*

CSIR-National Chemical Laboratory, Organic Chemistry Division, Pune- 411008, India; E-mail: a.das@ncl.res.in; Tel: +91(0)2025902385; Fax: +91(0)2025902629;
Chromatin and Disease Biology Lab; National Centre for Cell Science; Pune 411007, India, Email: samit@nccs.res.in.
<table>
<thead>
<tr>
<th>Table of contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials and method</td>
<td>S3</td>
</tr>
<tr>
<td>Synthetic scheme</td>
<td>S4</td>
</tr>
<tr>
<td>Synthesis and characterisation of 2</td>
<td>S4</td>
</tr>
<tr>
<td>Synthesis and characterisation of L</td>
<td>S5</td>
</tr>
<tr>
<td>1H NMR spectra of 2</td>
<td>S6</td>
</tr>
<tr>
<td>13C NMR spectra of 2</td>
<td>S7</td>
</tr>
<tr>
<td>Mass spectra of 2</td>
<td>S8</td>
</tr>
<tr>
<td>IR spectra of 2 in Acetonitrile</td>
<td>S9</td>
</tr>
<tr>
<td>1H NMR spectra of L</td>
<td>S10</td>
</tr>
<tr>
<td>13C NMR spectra of L</td>
<td>S11</td>
</tr>
<tr>
<td>Mass spectra of L</td>
<td>S12</td>
</tr>
<tr>
<td>IR spectra of L in Acetonitrile</td>
<td>S13</td>
</tr>
<tr>
<td>Mass spectra of L +Pd$^{2+}$ in Acetonitrile</td>
<td>S14</td>
</tr>
<tr>
<td>IR spectra of R in Acetonitrile</td>
<td>S15</td>
</tr>
<tr>
<td>Benesi-Hildebrand plot for binding studies of [Pd$^{2+}$] towards L</td>
<td>S16</td>
</tr>
<tr>
<td>Job’s plot for L with Pd$^{2+}$ showing 1:1 stoichiometry:</td>
<td>S16</td>
</tr>
<tr>
<td>Change in UV and Fluorescence of L as a function of the solution pH:</td>
<td>S17</td>
</tr>
<tr>
<td>UV-Vis and Fluorescence response of R towards Pd$^{2+}$</td>
<td>S17</td>
</tr>
<tr>
<td>Fluorescence response of L at $\lambda_{Ext} = 360$ nm</td>
<td>S18</td>
</tr>
<tr>
<td>Spectrophotometric interference study of L with Pd$^{2+}$ in presence of various metal ions</td>
<td>S18</td>
</tr>
<tr>
<td>UV-Vis and Fluorescence spectral studies for establishing the reversible binding of Pd$^{2+}$ to the L:</td>
<td>S19</td>
</tr>
<tr>
<td>1H NMR of L in absence and in presence of Pd$^{2+}$ in CD$_3$CN-d$_3$</td>
<td>S19</td>
</tr>
<tr>
<td>Cell culture and fluorescence imaging</td>
<td>S20</td>
</tr>
<tr>
<td>Confocal microscopic images of L at different [Pd$^{2+}$] in Hct116 cells</td>
<td>S20</td>
</tr>
<tr>
<td>Confocal microscopic images of L at different Pd species in Hct116 cells</td>
<td>S21</td>
</tr>
<tr>
<td>MTT assay for evolution of cytotoxicity of the reagent L towards Hct116 cells</td>
<td>S21</td>
</tr>
<tr>
<td>Evaluation of [Pd$^{2+}$] in human urine sample</td>
<td>S22</td>
</tr>
</tbody>
</table>
Materials.

Rhodamine B, Ethylenediamine, 4-Chloro-3-nitrocoumarin and Fe powder all metal perchlorate salts such as NaClO$_4$, KClO$_4$, Mg(ClO$_4$)$_2$, Ca(ClO$_4$)$_2$, Cu(ClO$_4$)$_2$, Zn(ClO$_4$)$_2$, Co(ClO$_4$)$_2$, Ni(ClO$_4$)$_2$, Cr(ClO$_4$)$_3$, Fe(ClO$_4$)$_2$, Cd(ClO$_4$)$_2$, Hg(ClO$_4$)$_2$, Pb(ClO$_4$)$_2$, Pd(PPh$_3$)$_4$, K$_2$PtCl$_4$, K$_2$PdCl$_6$ and PdCl$_2$ were obtained from Sigma-Aldrich and were used as received. Solvents used for synthesis of intermediates and final compounds were of AR grade and HPLC grade solvents for spectroscopic studies from S.D. Fine Chemicals in India.

Analytical Methods:

1H NMR spectra were recorded AV 400 MHz or AV-500 MHz Bruker NMR spectrometers using CDCl$_3$-d$_3$ and CD$_3$CN-d$_3$ as the solvent and tetra methyl silane (TMS) as an internal standard. ESI-Ms measurements were carried out on a Waters QTof-Micro instrument. Electronic spectra were recorded with a Shimadzu UV-3101 PC spectrophotometer; while fluorescence spectra were recorded using Quanta Master 400, PTI spectrofluorometer.

General experimental procedure for UV-Vis and Fluorescence studies:

5x10$^{-2}$ M solution of the perchlorate salts of the respective ion (Na$^+$, K$^+$, Fe$^{3+}$, Na$^+$, Mg$^{2+}$, Ni$^{2+}$, Co$^{2+}$, Cu$^{2+}$, Cd$^{2+}$, Pb$^{2+}$, Zn$^{2+}$, Cr$^{3+}$, Pd0, Pd$^{4+}$, Pt$^{2+}$ and Hg$^{2+}$) were prepared in pure aqueous medium, while PdCl$_2$ in brine solution for all studies. A stock solution of the receptor L (1 x 10$^{-4}$ M) was prepared in 10 mM HEPES buffer (pH 7. 2): acetonitrile (1: 1, v/v). Solution of the compound L was further diluted for spectroscopic titrations, and the effective final concentration of the solution of compound L used for the fluorescence study was 10 μM, while the final analyze concentration during emission spectral scanning was 1 x 10$^{-4}$ M. For all luminescence measurements, λ$_{Ext}$ = 530 nm with an emission slit width of 2/2 nm. The relative fluorescence quantum yields (ϕ$_f$) were estimated using Rhodamine B (ϕ$_r$ = 0.3 in aqueous medium at RT) as a reference.
Synthesis:

Scheme 1: Methodologies that were adopted for synthesis of 1, 2, L and R.

Synthesis of 2: A mixture of 1 (300 mg, 0.62 mmol), 4-Chloro-3-nitrocoumarin (140 mg, 0.62 mmol) were dissolved in dichloromethane (10 mL) stirred it room temperature for 2 hr under inert atmosphere. By monitoring TLC reaction was stopped. The crude product was subjected to silica gel chromatography using DCM: Methanol (99: 1, v/v) as eluent. Major fraction was collected and dried under vacuum, which afforded a red solid 400 mg, 95.92%. ESI- Ms (m/z) calculated for C_{39}H_{39}N_{5}O_{6}: 673, observed: 696 [M +Na]. \(^1\)H NMR [500 MHz, CDCl\(_3\)-d\(_3\): \(\delta\) (ppm)]: 8.49 (1H, s, -NH); 8.22 (1H, d, 8Hz, ArH); 7.96 (1H, d, J = 6.5 Hz, ArH); 7.64 (1H, t, J = 8 Hz, ArH); 7.53 - 7.49 (3H, m, ArH); 7.33 (1H, d, J = 8 Hz, ArH); 7.15 (1H, d, J = 6.5Hz, ArH); 6.42 (2H, s, ArH); 6.37 (2H, d, J = 9Hz, ArH); 6.28 (2H, d, J = 8.5 Hz, ArH); 3.55 (2H, t, J = 4 Hz, CH\(_2\)); 3.38 (8H, t, J = 7 Hz, CH\(_2\)); 2.90 (2H, t, J = 4 Hz, CH\(_2\)); 1.21 (12H, t, J = 7 Hz, CH\(_3\)). \(^1\)C NMR (500 MHz, CDCl\(_3\)-d\(_3\), \(\delta\) (ppm)): 133.34, 129.92, 12844, 127.92, 124.94, 124.11, 123.47, 122.95, 117.79, 114.29, 108.39, 103.57, 97.82, 66.12, 45.99, 44.44, 39.83 and 12.57.
Synthesis of L: Mixture of 2 (220 mg, 0.326 mmol) and Fe powder (116 mg, 2.071 mmol) were dissolved in methanol (15 mL) to this water 6 mL was added. Start the reflux by the time 6M HCl (4mL) was added. By monitoring TLC, after 1.5 hr reaction was stopped. The crude product was subjected to silica gel chromatography using DCM: Methanol (99: 3, v/v) as eluent. Major fraction was collected and dried under vacuum, which afforded a sticky red solid. Yield: 190 mg, 90.47 %. ESI- Ms (m/z) calculated for C_{39}H_{41}N_{5}O_{4}: 643, observed: 666.37 [L± Na]. ^1H NMR [400 MHz, CDCl\textsubscript{3}-d\textsubscript{3}: δ (ppm)]: 7.98 (1H, s, -ArH); 7.62 (1H, d, J = 6.4 Hz, ArH); 7.50 (1H, d, J = 6.8 Hz, ArH); 7.33 (1H, t, J = 6 Hz, ArH); 7.28-7.22(3H, m, ArH); 7.13(1H, t, J = 6.4 Hz, ArH); 6.42 (1H, s, ArH); 6.39 (3H, t, J = 5.2 Hz, ArH); 6.18 (2H, d, J = 5.6 Hz, ArH); 5.27 (1H, s, -NH); 3.55 (2H, t, J = 4.4 Hz, CH\textsubscript{2}); 3.32 (8H, q, J = 5.6 Hz, CH\textsubscript{2}); 3.23 (2H, t, J = 4.4 Hz, CH\textsubscript{2}); 1.16 (12H, t, J = 5.6 Hz, CH\textsubscript{3}). ^13C NMR (400 MHz, CDCl\textsubscript{3}-d\textsubscript{3}, δ (ppm)): 170.06, 161.23, 153.33, 148.92, 136.75, 132.92, 130.61, 128.61, 128.35, 128.00, 123.93, 128.83, 122.90, 121.61, 117.48, 116.71, 111.96, 108.04, 104.81, 97.65, 65.43, 60.41 46.59, 44.34, 40.32 and 12.55.

Synthesis of R: Synthetic procedure that was adopted for synthesis R from our previous literature.2

References

1HNMR spectra of 2

SI Figure 1: 1H NMR spectra of 2 in CDCl$_3$-d$_3$ medium.
13C NMR spectra of 2

SI Figure 2. 13C NMR spectra of 2 in CDCl$_3$-d$_3$ medium.
Mass spectra of 2

SI Figure 3: ESI- Ms Spectrum of 2 in CH$_3$OH.
IR spectra of 2 in Acetonitrile

SI Figure 4: IR Spectra of 2 in Acetonitrile.
SI Figure 5: 1H NMR spectra of L in CDCl$_3$-d$_3$ medium.
^{13}C NMR spectra of L

SI Figure 6: ^{13}C NMR spectra of 2 in CDCl$_3$-d$_3$ medium.
Mass spectra of L

SI Figure 7: ESI- Ms Spectrum of L in Methanol.
IR spectra of L in Acetonitrile

SI Figure 8: IR Spectra of L in Acetonitrile.
Mass spectra of L +Pd$^{2+}$ in Acetonitrile

SI Figure 9: Mass Spectra of L+Pd$^{2+}$ in Methanol.
IR spectra of R in Acetonitrile

SI Figure 10: IR Spectra of R in Acetonitrile.
Benesi-Hildebrand plot for binding studies of [Pd^{2+}] towards L

SI Figure 11: Benesi-Hildebrand plot of L (10 µM) for varying [Pd^{2+}] (0 to 20 µM) (a) from UV-Visible titration; (b) Fluorescence titration by using $\lambda_{\text{Ext}} = 530$ and $\lambda_{\text{Mon}} = 594$ nm. Good linear fit confirms the 1:1 binding stoichiometry in in aq. HEPES buffer-acetonitrile (1:1, v/v; pH 7.2) medium.

Job’s plot for L with Pd^{2+} showing 1:1 stoichiometry:

SI Figure 12: Job’s plot between L and Pd^{2+} confirmed 1:1 adducts.
Change in Uv and Fluorescence of L as a function of the solution pH:

![Graph](image)

SI Figure 13: (a) UV; (b) Fluorescence response of L (10 μM) as a function of pH in Acetonitrile-Universal buffer (1: 1, v/v), pH is adjusted by using aqueous solutions of 1 M HCl or 1 M NaOH.

Uv-Vis and Fluorescence response of R towards Pd^{2+}

![Graph](image)

SI Figure 14: Changes in (a) Absorption and (b) Emission spectra (λ_{Ext} of 530 nm; slit = 2/2 nm) of the receptor R (10 μM) in absence and presence of Pd^{2+}; Studies were performed in aq. HEPES buffer-acetonitrile (1: 1, v/v; pH 7.2) medium.
Fluorescence response of L at $\lambda_{\text{Ext}} = 360$ nm

SI Figure 15: (a) Changes in Emission spectra (λ_{Ext} of 360 nm; slit = 2/2 nm) of the receptor L (10 μM) in absence and presence of different metal ions (M$^{n+}$ = Li$^+$, Na$^+$, K$^+$, Mg$^{2+}$, Al$^{3+}$, Ca$^{2+}$, Ba$^{2+}$, Sr$^{2+}$, Cu$^{2+}$, Ni$^{2+}$, Zn$^{2+}$, Cd$^{2+}$, Co$^{2+}$, Fe$^{2+}$, Fe$^{3+}$, Cr$^{3+}$; Pb$^{2+}$, Pd$^{2+}$, Pt$^{2+}$, Pd0, Pd$^{4+}$); All studies were performed in aq. solution of Acetonitrile: HEPES buffer (1:1(v/v); 10 mM; pH 7.2). (b) Overlap spectra of L at $\lambda_{\text{Ext}} = 360$ nm.

Spectrophotometric interference study of L with Pd$^{2+}$ in presence of various metal ions

SI Figure 16: Spectrophotometric interference study of L (10 μM) with Pd$^{2+}$(10 μM) in presence of various metal ions (20 μM) in HEPES buffer by using $\lambda_{\text{Ext}} = 530$ and $\lambda_{\text{Mon}} = 594$nm.
Uv-Vis and Fluorescence spectral studies for establishing the reversible binding of Pd$^{2+}$
to the L:

SI Figure 17: (a) UV and (b) Fluorescence studies for establishing the reversible binding of
Pd$^{2+}$ (2eq) to L (10 μM) in presence of Cysteine (4 eq) and using $\lambda_{\text{Ext}} = 530$ nm; and slit
width 2/2 nm, in aq. solution of Acetonitrile and HEPES buffer (1:1; 10 mM; pH 7.2).

1H NMR of L in absence and in presence of Pd$^{2+}$ in CD$_3$CN-d$_3$

SI Figure 18: Partial 1H NMR spectra of L (3 mM) in absence and in presence of Pd$^{2+}$ were
recorded in CD$_3$CN-d$_3$.
Cell culture and fluorescence imaging

Hct116 cells were seeded on coverslips placed in 6 well plates. After 24 hours cells were treated with L (10μM) for 20 minutes. Cells were then washed thrice with Phosphate Buffer Saline (1X PBS) and fixed with 4% PFA for 10 minutes and washed again with Phosphate Buffer Saline (1X PBS). Permeabilization of the cells was done using 0.2% Triton X 100 for 5 minutes. The L-stained colon cancer cells Hct116 incubated with Pd^{2+} (0.1 ppm) for 30 min. Again three washes were given and then cover slips mounted using mounting medium. Nail paints was used to seal the coverslips mounted on the glass slides. Images were acquired in Olympus Fluoview Microscope.

Confocal microscopic images of L at different [Pd^{2+}] in Hct116 cells

![Confocal microscopic images](image)

SI Figure 19: Confocal micrographs of live Hct116 cells in the presence of L (10 μM in aq. HEPES buffer–CH₃CN (1: 1, v/v; pH 7.2) medium). The images were acquired after 30 min of treatment of PdCl₂ on Hct116 cells. Bottom panels show an overlay of images with a confocal phase.
Confocal microscopic images of L at different Pd species in Hct116 cells

SI Figure 20: Confocal micrographs of live Hct116 cells in the presence of L (10 μM in aq. HEPES buffer–CH₃CN (1: 1, v/v; pH 7.2) medium). The images were acquired after 30 min of treatment of Pd(0)(Pd(Pph₃)₄ in THF solution); Pd(ii) (PdCl₂ in Aq. medium) and Pd(iv) (K₂PdCl₆ in Aq. Medium) on Hct116 cells. Bottom panels show an overlay of images with a confocal phase. Note Pd (Pph₃)₄ in THF solution.

MTT assay for evolution of cytotoxicity of the reagent L towards Hct116 cells

SI Figure 21. MTT assay to determine the cell viability percentage in Hct116 colon cancer cells. The concentration of the L ranges from 1-15μM and treated for 24 hours.

Evaluation of [Pd\(^{2+}\)] in human urine sample

Methodology:

Urine was diluted (fresh urine sample was diluted 100 times with water: acetonitrile (1: 1, v/v) mixture) before measurement and some solutions were spiked with known concentration of Pd\(^{2+}\) as an internal standard without further treatment. These solutions along with solutions spiked with known [Pd\(^{2+}\)] (1 µM, 2 µM and 3 µM) as an internal standard were used for emission measurements without further treatment. Thus fluorescence intensity of such urine samples spiked with 1 µM, 2 µM and 3µM of Pd\(^{2+}\) were \(I_{\text{urine}+1}\), \(I_{\text{urine}+2}\) and \(I_{\text{urine}+3}\), respectively. Fluorescence intensities for aqueous HEPES buffer solution having pH of 7.2 was evaluated for [Pd\(^{2+}\)] of 1, 2 and 3µM and these values were \(I_1\), \(I_2\) and \(I_3\), respectively. Average of three differences (\(I_{\text{urine}+1}-I_1\), \(I_{\text{urine}+2}-I_2\) and \(I_{\text{urine}+3}-I_3\) and the calibration plot for Pd\(^{2+}\) led us to evaluate the actual [Pd\(^{2+}\)] of (0.2 µg/litre) in the urine sample.