Supercharged Green Fluorescent Proteins as Bimodal Reporter Genes for CEST and Optical Imaging

A.Bar-Shira,b, Y. Lianga,b, K.W.Y. Chana,b, A.A. Gilada,b,f, and J. W. M. Bultea,f*

aRussell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine Baltimore, Maryland, USA
bCellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, the Johns Hopkins University School of Medicine Baltimore, Maryland, USA
cDepartment of Chemical & Biomolecular Engineering, the Johns Hopkins University School of Medicine Baltimore, Maryland, USA
dDepartment of Biomedical Engineering, the Johns Hopkins University School of Medicine Baltimore, Maryland, USA
eDepartment of Oncology, the Johns Hopkins University School of Medicine Baltimore, Maryland, USA
fF.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA

Experimental Procedures

Protein expression and purification: E. coli-optimized genes encoding to wild type GFP (wt) and its superpositively-charged variants (+36 and +48), achieved by modifying the solvent-exposed amino acids to lysine or arginine, were obtained from Dr. David R. Liu (Harvard University, Cambridge, MA)1. The proteins were expressed in BL21 (DE3) E. coli after induction in Magic MediaTM and purified using cobalt-based immobilized metal affinity chromatography. The expression and purity was determined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Pure proteins were dialyzed against 2 M NaCl in PBS.

CEST MRI: CEST-MRI experiments were performed on a vertical bore 11.7 T Bruker Avance system, with the sample temperature controlled to be 37°C along the whole experiment. One mm capillaries were loaded with protein solutions in duplicate and located in the middle of a 20 mm rf bird cage coil. A slice thickness of 1 mm, a FOV = 17×16 mm2, and a matrix size = 128×64, resulted in a resolution of 0.133×0.25 mm2 for each CEST/WASSR experiment. CEST-MRI characteristics were measured using a modified RARE sequence (TR/TE=6000/9.4 ms), including a magnetization transfer module (B\textsubscript{1}=4000 ms and variable powers of 2.4 µT, 3.6 µT, 4.7 µT, and 7.2 µT) from -5 to +5 ppm, in increments of 0.2 ppm. To correct for B\textsubscript{0} inhomogeneity, the absolute water resonance frequency shift was determined at each voxel using a modified WASSR method2, with the same parameters as in CEST imaging except TR=1.5 sec and B\textsubscript{1} saturation pulse=0.5 µT/250 ms. Mean CEST spectra were derived from an ROI for each sample after B0 correction using MatLab. MTR asymmetry (MTR\textsubscript{asym})=100×(SΔω − S+Δω)/S0 was computed at different offsets of Δω.

Cloning: The synthetic genes encoded for wt, +36, and +48 GFP were optimized for expression in a mammalian setup and were purchased from Genscript (Piscataway, NJ). All three genes were sub-cloned into the pcDNA3.1 expression vector (Invitrogen, Carlsbad, CA). The optimized genes sequences are as follows:
Expression in mammalian cells: Human Embryonic Kidney 293 cells (HEK-293T) were transfected with one of the following vectors, pcDNA3.1-wtGFP, pcDNA3.1-+36GFP, or pcDNA3.1-+48GFP, with the aid of the Lipofectamine-2000 (Invitrogen, Carlsbad, CA) transfection reagent. Twenty-four hours following transfection, a fluorescent microscope was used to monitor green fluorescence from transfected and non-transfected cells.
Figure S1. CEST characteristics of GFP proteins as obtained when a saturation pulse was applied at 1.8 ppm frequency offset. a) MTR\textsubscript{asym} values at different rf power, and b) increase in the obtained MTR\textsubscript{asym} value relative to wt GFP. CEST data of 1.25 mg/mL pure protein solutions were acquired at 11.7 T, 37°C, pH=7.2, and B\textsubscript{1}=4000 ms. N=7 for each sampled protein. P-values were calculated using a Student’s t-test. * p<0.05, ** p<0.01, *** p<0.001.

Figure S2. The dependency of the obtained MTR\textsubscript{asym} values on the applied saturation pulse (B\textsubscript{1}) power at Dw=1.8 ppm. Data of 1.25 mg/mL pure protein solutions were acquired at 11.7 T, 37°C, pH=7.2, and B\textsubscript{1}=4000 ms. N=7 for each sampled protein.

Table S1: Number of arginine residues and the measured MTR\textsubscript{asym} value obtained at 1.8 ppm (1.25 mg/mL) at different B\textsubscript{1} powers.

<table>
<thead>
<tr>
<th></th>
<th>No. of arginines</th>
<th>MTR\textsubscript{asym} B\textsubscript{1}=2.4 mT</th>
<th>MTR\textsubscript{asym} B\textsubscript{1}=3.6 mT</th>
<th>MTR\textsubscript{asym} B\textsubscript{1}=4.7 mT</th>
<th>MTR\textsubscript{asym} B\textsubscript{1}=7.2 mT</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt GFP</td>
<td>7</td>
<td>1.1±0.2%</td>
<td>1.9±0.2%</td>
<td>3.0±0.3%</td>
<td>4.3±0.2%</td>
</tr>
<tr>
<td>+36 GFP</td>
<td>20</td>
<td>1.9±0.2%</td>
<td>3.3±0.3%</td>
<td>4.6±0.3%</td>
<td>5.7±0.3%</td>
</tr>
<tr>
<td>+48 GFP</td>
<td>21</td>
<td>2.0±0.2%</td>
<td>3.4±0.2%</td>
<td>5.1±0.3%</td>
<td>6.1±0.1%</td>
</tr>
</tbody>
</table>

References