C-H Functionalization of Terminal Alkynes Towards Stereospecific Synthesis of (E) or (Z) 2-Methylthio-1,4-ene-diones

Shekaraiah Devari, Arvind Kumar, Ramesh Deshidi, and Bhahwal Ali Shah*

Academy of Scientific and Innovative Research (AcSIR); Natural Product Microbes, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu -Tawi, 180001.

Experimental:

1H spectra were recorded on Brucker-Avance DPX FT-NMR 500 and 400 MHz instruments. Chemical data for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent (CDCl$_3$, 7.26ppm). Integration, and multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constant (Hz). Carbon nuclear magnetic resonance spectra (13C NMR) were recorded at 100 MHz or 125 MHz. Chemical data for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent. Reagents and solvents used were mostly AR grade. Silica gel coated plates were used for TLC.

Experimental procedure

General procedure for synthesis of (E)-2-methylthio-1,4-ene-dione (Path I);

TMSOTf (222 µl, 1mmol) was added to a solution of terminal alkyne (102 µL, 1mmol) in DMSO (3 ml) followed by the addition of iodine (256 mg, 2mmol). The reaction mixture was heated at 80°C for 18 h and the product formation was monitored by TLC. After completion of reaction, reaction mixture is cooled to room temperature, followed by quenching with 10% Na$_2$S$_2$O$_3$ solution, and extraction with ethyl acetate(3 x 50ml). The combined organic layers were washed with brine solution, concentrated under vacuum and purified by column chromatography using ethyl acetate and hexane to afford corresponding products.

Note: At higher temperatures benzoic acid formation was also observed.
Characterization data:

(E)-2-(methylthio)-1,4-diphenylbut-2-ene-1,4-dione (2aa): 1H NMR (400 MHz, CDCl$_3$) δ 8.00 (d, $J = 7.6$ Hz, 2H), 7.90 (d, $J = 7.6$ Hz, 2H), 7.55 (dd, $J = 17.6$, 7.4 Hz, 2H), 7.44 (dt, $J = 10.8$, 7.7 Hz, 4H), 7.03 (s, 2H), 2.45 (s, 6H); 13C NMR (100 MHz, CDCl$_3$) δ 193.7, 185.1, 160.8, 137.2, 134.9, 133.6, 132.9, 130.1, 129.1, 128.8, 128.7, 128.4, 128.1, 115.9, 14.9.

(E)-2-(methylthio)-1,4-di-p-tolylbut-2-ene-1,4-dione (2ab): 1H NMR (400 MHz, CDCl$_3$) δ 7.90 (d, $J = 7.9$ Hz, 2H), 7.81 (d, $J = 7.9$ Hz, 2H), 7.26 – 7.21 (d, $J = 7.9$ Hz, 4H), 7.01 (s, 1H), 2.43 (s, 3H), 2.39 (s, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 193.6, 184.7, 160.3, 144.6, 143.8, 134.7, 132.4, 130.2, 129.8, 129.5, 129.3, 128.8, 128.6, 128.2, 115.7, 21.8, 21.7, 14.9.

(E)-1,4-bis(4-(tert-butyl)phenyl)-2-(methylthio)but-2-ene-1,4-dione (2ac): 1H NMR (400 MHz, CDCl$_3$) δ 7.85 (d, $J = 8.3$ Hz, 2H), 7.78 (d, $J = 8.3$ Hz, 2H), 7.38 (dd, $J = 8.2$, 3.8 Hz, 4H), 6.96 (s, 1H), 2.36 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 193.6, 184.7, 160.4, 157.2, 156.8, 134.6, 132.2, 128.7, 128.5, 125.8, 125.2, 115.7, 35.2, 35.1, 31.1, 15.0.
(E)-1,4-bis(4-ethylphenyl)-2-(methylthio)but-2-ene-1,4-dione (2ad):

1H NMR (400 MHz, CDCl$_3$) δ 7.92 (d, $J = 8.2$ Hz, 2H), 7.84 (d, $J = 8.2$ Hz, 2H), 7.26 (t, $J = 8.2$ Hz, 4H), 7.02 (s, 1H), 2.69 (q, $J = 7.6$ Hz, 4H), 2.44 (s, 3H), 1.24 (t, $J = 7.3$ Hz, 6H); 13C NMR (125 MHz, CDCl$_3$) δ 193.6, 184.8, 160.4, 150.6, 150.0, 134.9, 132.6, 130.8, 130.3, 128.9, 128.7, 128.4, 128.1, 128.0, 115.8, 29.1, 28.9, 15.2, 15.1, 14.9.

(E)-1,4-bis(4-bromophenyl)-2-(methylthio)but-2-ene-1,4-dione (2ae):

1H NMR (400 MHz, CDCl$_3$) δ 7.84 (d, $J = 8.0$ Hz, 2H), 7.75 (d, $J = 8.1$ Hz, 2H), 7.59 (t, $J = 9.1$ Hz, 4H), 6.95 (s, 1H), 2.46 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 192.5, 184.0, 161.2, 135.8, 133.6, 132.6, 132.2, 132.0, 130.1, 129.9, 128.9, 128.3, 115.4, 15.0.

(E)-1,4-bis(4-chlorophenyl)-2-(methylthio)but-2-ene-1,4-dione (2af):

1H NMR (500 MHz, CDCl$_3$) δ 7.79 – 7.73 (d, $J = 8.6$ Hz, 2H), 7.67 (d, $J = 8.6$ Hz, 2H), 7.53 – 7.45 (m, 4H), 6.87 (s, 1H), 2.38 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 192.7, 184.1, 161.4, 135.7, 133.5, 132.2, 132.0, 130.1, 130.0, 129.0 128.4, 115.2, 15.1.
(E)-2-(methylthio)-1,4-di(naphthalen-1-yl)but-2-ene-1,4-dione (2ag): 1H NMR (500 MHz, CDCl$_3$) δ 9.25 (d, $J = 8.7$ Hz, 1H), 8.15 – 8.02 (m, 2H), 7.96 (d, $J = 8.1$ Hz, 1H), 7.88 – 7.78 (m, 2H), 7.68 (ddd, $J = 20.9$, 14.9, 7.0 Hz, 3H), 7.51 (dd, $J = 16.5$, 9.4 Hz, 1H), 7.47 – 7.31 (m, 4H), 6.78 (s, 1H), 2.45 (s, 3H). 13C NMR (125 MHz, CDCl$_3$) δ 195.2, 189.5, 161.6, 136.5, 134.6, 134.0, 133.7, 132.3, 131.8, 131.4, 131.1, 130.1, 128.8, 128.3, 127.6, 127.5, 126.72, 126.69, 126.4, 125.5, 124.4, 124.1, 15.2.

(E)-1,4-bis(2-chlorophenyl)-2-(methylthio)but-2-ene-1,4-dione (2ah): 1H NMR (400 MHz, CDCl$_3$) δ 7.92 (d, $J = 7.8$ Hz, 1H), 7.50 – 7.25 (m, 7H), 6.67 (s, 3H), 2.49 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 191.4, 187.2, 160.8, 138.6, 134.3, 133.4, 133.3, 132.1, 131.8, 131.4, 130.3, 130.2, 127.1, 126.5, 119.6, 15.2.

(E)-2-(methylthio)-1,4-bis(3-nitrophenyl)but-2-ene-1,4-dione (2ai): 1H NMR (400 MHz, DMSO) δ 8.67 (s, 1H), 8.58 (s, 1H), 8.46 (dd, $J = 16.8$, 8.4 Hz, 3H), 8.30 (d, $J = 7.7$ Hz, 1H), 7.82 (q, $J = 7.8$ Hz, 2H), 7.32 (s, 1H), 2.74 (s, 3H). 13C NMR (100 MHz, DMSO) δ 191.5, 183.1,
General procedure for synthesis of (Z)-2-methylthio-1,4-ene-dione (Path II);
BF₃·Et₂O (122 µl, 1mmol) was added to a solution of terminal alkyne (102 µL, 1mmol) in DMSO (3 ml) followed by the addition of iodine (126 mg, 1mmol). The reaction mixture was heated at 80°C for 18 h and the product formation was monitored by TLC. After completion of reaction, reaction mixture is cooled to room temperature, followed by quenching with 10% Na₂S₂O₃ solution, and extraction with ethyl acetate (3 x 50ml). The combined organic layers were washed with brine solution, concentrated under vacuum and purified by column chromatography using ethyl acetate and hexane to afford corresponding products.

Characterization data:

(Z)-2-(methylthio)-1,4-diphenylbut-2-ene-1,4-dione (2ba): \(^1\)H NMR (500 MHz, CDCl₃) δ 8.09 – 8.04 (dd, J = 5.2, 3.4 Hz, 2H), 7.94 (dd, J = 5.2, 3.4 Hz, 2H), 7.70 – 7.65 (m, 1H), 7.53 (t, J = 7.9 Hz, 3H), 7.44 (dd, J = 10.6, 4.7 Hz, 2H), 7.10 (s, 1H), 2.16 (s, 3H); \(^{13}\)C NMR (125 MHz, CDCl₃) δ 191.9, 188.2, 160.7, 137.8, 134.89, 132.7, 130.0, 129.2, 128.7, 1281, 116.0, 15.5.

(Z)-2-(methylthio)-1,4-dip-tolylbut-2-ene-1,4-dione (2bb): \(^1\)H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.2 Hz, 2H), 7.84 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 7.06 (s, 1H), 2.45 (s, 3H), 2.39 (s, 3H), 2.14 (s, 3H).
\(^{13}\)C NMR (100 MHz, CDCl\(_3\)) δ 191.6, 187.9, 160.3, 146.0, 143.5, 135.4, 132.5, 130.2, 129.8, 129.3, 128.2, 116.0, 21.9, 21.6, 15.4.

(Z)-1,4-bis(4-(tert-butyl)phenyl)-2-(methylthio)but-2-ene-1,4-dione (2bc): \(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.92 (d, \(J = 8.2\) Hz, 2H), 7.81 (d, \(J = 8.2\) Hz, 2H), 7.45 (d, \(J = 8.1\) Hz, 2H), 7.38 (d, \(J = 8.2\) Hz, 2H), 6.99 (s, 1H), 2.09 (s, 3H), 1.28 (s, 9H), 1.25 (s, 9H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) δ 191.6, 188.0, 160.4, 152.2, 149.7, 135.6, 132.7, 130.3, 128.7, 128.3, 128.2, 115.9, 29.1, 28.9, 15.4, 15.2, 15.1.

(Z)-1,4-bis(4-ethylphenyl)-2-(methylthio)but-2-ene-1,4-dione (2bd):
\(^1\)H NMR (400 MHz, CDCl\(_3\)) δ 7.98 (d, \(J = 8.2\) Hz, 2H), 7.87 (d, \(J = 8.2\) Hz, 2H), 7.34 (d, \(J = 8.2\) Hz, 2H), 7.29 – 7.24 (m, 2H), 7.07 (s, 1H), 2.72 (dq, \(J = 20.5, 7.6\) Hz, 4H), 2.15 (s, 3H), 1.30 – 1.23 (m, 6H); \(^{13}\)C NMR (125 MHz, CDCl\(_3\)) δ 191.6, 188.0, 160.4, 152.2, 149.7, 135.6, 132.7, 130.3, 128.7, 128.3, 128.2, 115.9, 29.1, 28.9, 15.4, 15.2, 15.1.
(Z)-1,4-bis(4-bromophenyl)-2-(methylthio)but-2-ene-1,4-dione (2be): 1H NMR (400 MHz, CDCl$_3$) δ 7.84 (d, $J = 8.4$ Hz, 2H), 7.72 (d, $J = 8.4$ Hz, 2H), 7.61 (d, $J = 8.4$ Hz, 2H), 7.52 (d, $J = 8.4$ Hz, 2H), 6.94 (s, 1H), 2.08 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 190.8, 187.0, 160.9, 136.4, 133.5, 132.6, 132.0, 131.3, 130.6, 129.6, 128.0, 115.5, 15.5.

(Z)-1,4-bis(4-chlorophenyl)-2-(methylthio)but-2-ene-1,4-dione (2bf): 1H NMR (500 MHz, CDCl$_3$) δ 7.83 (dd, $J = 6.8$, 1.8 Hz, 2H), 7.73 – 7.68 (m, 2H), 7.60 – 7.47 (m, 4H), 6.94 (s, 1H), 2.07 (s, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 190.8, 187.0, 160.9, 136.4, 133.5, 132.6, 132.0, 131.3, 130.6, 129.6, 128.0, 115.6, 15.5.

(Z)-2-(methylthio)-1,4-di(naphthalen-1-yl)but-2-ene-1,4-dione (2bg): 1H NMR (400 MHz, CDCl$_3$) δ 9.15 (d, $J = 8.6$ Hz, 1H), 8.63 (d, $J = 8.4$ Hz, 1H), 8.23 (d, $J = 7.2$ Hz, 1H), 8.12 (d, $J = 8.1$ Hz, 1H), 7.94 (d, $J = 7.7$ Hz, 2H), 7.86 (d, $J = 8.0$ Hz, 1H), 7.80 – 7.70 (m, 2H), 7.62 – 7.51 (m, 4H), 7.44 (t, $J = 7.7$ Hz, 1H), 7.03 (s, 1H), 2.28 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 193.6, 191.9, 161.5, 136.8, 135.7, 134.3, 134.1, 133.9, 132.3, 131.2, 130.9, 130.3, 129.3, 128.9, 128.4, 127.67, 127.64, 127.0, 126.4, 125.8, 124.5, 124.5, 121.1, 15.6.
(Z)-1,4-bis(2-chlorophenyl)-2-(methylthio)but-2-ene-1,4-dione (2bh): 1H NMR (400 MHz, CDCl$_3$) δ 7.76 (d, $J = 7.7$ Hz, 1H), 7.51 (m, 3H), 7.41 – 7.32 (m, 4H), 6.82 (s, 1H), 2.38 (s, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 191.2, 189.8, 159.8, 139.0, 135.5, 133.7, 133.6, 132.0, 132.0, 131.4, 131.2, 130.3, 130.2, 127.1, 127.0, 122.3, 16.0.

![Diagram of 2bh](image)

(Z)-2-(methylthio)-1,4-bis(3-nitrophenyl)but-2-ene-1,4-dione (2bi): 1H NMR (400 MHz, CDCl$_3$) δ 8.88 (s, 1H), 8.73 (s, 1H), 8.59 – 8.53 (m, 1H), 8.47 – 8.37 (m, 2H), 8.30 (d, $J = 7.8$ Hz, 2H), 7.81 (t, $J = 8.0$ Hz, 1H), 7.71 (dd, $J = 14.2$, 6.1 Hz, 1H), 7.13 (s, 1H), 2.20 (d, $J = 12.7$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 189.4, 185.5, 161.6, 148.8, 148.4, 138.8, 136.0, 135.3, 133.7, 130.7, 130.1, 129.1, 127.1, 124.4, 122.8, 115.4, 15.7.

DMSO-d_6 Experiment:

![Diagram of DMSO-d_6 Experiment](image)

DMSO as a solvent: 1H NMR (400 MHz, CDCl$_3$) δ 8.03 (d, $J = 8.7$ Hz, 2H), 7.93 (d, $J = 8.6$ Hz, 2H), 7.05 (s, 1H), 6.98 (d, $J = 8.7$ Hz, 2H), 6.92 (d, $J = 8.6$ Hz, 2H), 3.90 (s, 3H), 3.85 (s, 3H), 2.14 (s, 3H).

DMSO-d_6 as a solvent: 1H NMR (400 MHz, CDCl$_3$) δ 8.04 (d, $J = 8.6$ Hz, 2H), 7.93 (d, $J = 8.5$ Hz, 2H), 7.05 (s, 1H), 6.98 (d, $J = 8.5$ Hz, 2H), 6.92 (d, $J = 8.7$ Hz, 2H), 3.90 (s, 3H), 3.86 (s, 3H).
Table S1. Optimization for synthesis of β-methylthio-α,β-unsaturated-γ-ketoesters*

<table>
<thead>
<tr>
<th>Entry</th>
<th>Iodine</th>
<th>promoter</th>
<th>Equiv.</th>
<th>Yield (%)</th>
<th>E/Z [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I₂</td>
<td>TMSOTf</td>
<td>2:1</td>
<td>72</td>
<td>80:20</td>
</tr>
<tr>
<td>2</td>
<td>I₂</td>
<td>TMSOTf</td>
<td>3:1</td>
<td>78</td>
<td>E only</td>
</tr>
<tr>
<td>3</td>
<td>I₂</td>
<td>BF₃, Et₂O</td>
<td>1:1</td>
<td>72</td>
<td>45:55</td>
</tr>
<tr>
<td>4</td>
<td>I₂</td>
<td>BF₃, Et₂O</td>
<td>1:2</td>
<td>43**</td>
<td>48:52</td>
</tr>
<tr>
<td>5</td>
<td>I₂</td>
<td>BF₃, Et₂O</td>
<td>2:1</td>
<td>51**</td>
<td>49:51</td>
</tr>
<tr>
<td>5</td>
<td>I₂</td>
<td>BF₃, Et₂O</td>
<td>3:1</td>
<td>60**</td>
<td>ND</td>
</tr>
</tbody>
</table>

*Reactants: 1 (1 mmol), 3 (1 mmol), DMSO (3 ml), 18 h, 80 °C. **In case of BF₃, Et₂O there was also formation of homo coupling products of phenylacetylene (2aa and 2ba), in addition to cross coupling products 4aa and 4ba.

General procedure for synthesis of (E)-β-methylthio-α,β-unsaturated-γ-ketoesters (Path I):
TMSOTf (222 µl, 1mmol) was added to a solution of terminal alkyne (102 µL, 1mmol) in DMSO (3 ml) followed by the addition of iodine (378mg, 3mmol) and ethyl glyoxylate (102 µL, 1mmol). The reaction mixture was heated at 80°C for 18 h and the product formation was monitored by TLC. After completion of reaction, reaction mixture is cooled to room temperature, followed by quenching with 10% Na₂S₂O₃ solution, and extraction with ethyl acetate (3 x 50ml). The combined organic layers were washed with brine solution, concentrated under vacuum and purified by column chromatography using ethyl acetate and hexane to afford corresponding products.
Characterization data:

\[
\text{(E)-ethyl 3-(methylthio)-4-oxo-4-phenylbut-2-enoate (4aa):} \]
\[\begin{align*}
{^1}H \text{ NMR (400 MHz, CDCl}_3) \text{ }{^1}H \text{ NMR (400 MHz, CDCl}_3) \delta 7.97 (d, J = 7.8 \text{ Hz, 2H}), 7.57 (t, J = 7.3 \text{ Hz, 1H}), 7.46 (t, J = 7.6 \text{ Hz, 2H}), 5.82 (s, 1H), 3.97 (q, J = 7.1 \text{ Hz, 2H}), 2.36 (s, 3H), 1.04 (t, J = 7.1 \text{ Hz, 3H}); {^{13}}C \text{ NMR (100 MHz, CDCl}_3) \delta 192.8, 163.5, 158.2, 134.8, 133.8, 129.0, 128.8, 111.9, 60.6, 14.9, 13.9.}
\]

\[
\text{(E)-ethyl 3-(methylthio)-4-oxo-4-(p-tolyl)but-2-enoate (4ab):} \]
\[\begin{align*}
{^1}H \text{ NMR (500 MHz, CDCl}_3) \delta 7.88 (d, J = 8.1 \text{ Hz, 2H}), 7.27 (d, J = 8.0 \text{ Hz, 2H}), 5.82 (s, 1H), 4.01 (q, J = 7.1 \text{ Hz, 2H}), 2.43 (s, 3H), 2.39 (s, 3H), 1.08 (dd, J = 8.6, 5.6 \text{ Hz, 3H}); {^{13}}C \text{ NMR (125 MHz, CDCl}_3) \delta 192.5, 163.60, 158.4, 144.9, 132.4, 129.5, 129.2, 111.7, 60.6, 21.8, 14.9, 13.9.}
\]

\[
\text{(E)-ethyl 4-(4-(tert-butyl)phenyl)-3-(methylthio)-4-oxobut-2-enoate(4ac):} \]
\[\begin{align*}
{^1}H \text{ NMR (500 MHz, CDCl}_3) \delta 7.90 (d, J = 8.4 \text{ Hz, 2H}), 7.48 (d, J = 8.5 \text{ Hz, 2H}), 5.82 (s, 1H), 4.00 (q, J = 7.1 \text{ Hz, 2H}), 2.38 (s, 3H), 1.33 (s, 9H), 1.06 (t, J = 7.1 \text{ Hz, 3H}); {^{13}}C \text{ NMR (125 MHz, CDCl}_3) \delta 192.5, 163.6, 158.5, 157.7, 132.2, 129.1, 125.8, 111.7, 60.6, 35.2, 31.1, 14.9, 13.8.}
\]
(E)-ethyl 4-(4-methoxyphenyl)-3-(methylthio)-4-oxobut-2-enoate (4ad): 1H NMR (500 MHz, CDCl$_3$) δ 7.94 (d, $J = 8.9$ Hz, 2H), 6.95 (d, $J = 8.9$ Hz, 2H), 5.80 (s, 1H), 4.00 (q, $J = 7.1$ Hz, 2H), 3.87 (s, 3H), 2.38 (s, 3H), 1.07 (t, $J = 7.1$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 191.5, 131.5, 127.9, 114.1, 111.6, 60.6, 55.6, 14.9, 13.9.

(E)-ethyl 4-([1,1'-biphenyl]-4-yl)-3-(methylthio)-4-oxobut-2-enoate (4ae): 1H NMR (500 MHz, CDCl$_3$) δ 8.02 (m, 2H), 7.67 (m, 2H), 7.60 (m, 2H), 7.45 (dd, $J = 10.2$, 4.7 Hz, 2H), 7.38 (m, 1H), 5.83 (s, 1H), 3.99 (q, $J = 7.1$ Hz, 2H), 2.39 (s, 3H), 1.06 (t, $J = 7.1$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 192.5, 163.7, 158.4, 146.6, 139.8, 133.5, 129.6, 129.0, 128.4, 127.5, 127.3, 111.9, 60.7, 14.9, 13.9.

(E)-ethyl 4-(2-chlorophenyl)-3-(methylthio)-4-oxobut-2-enoate (4af): 1H NMR (500 MHz, CDCl$_3$) δ 7.89 (dd, $J = 7.8$, 1.4 Hz, 1H), 7.47 (m, 2H), 7.36 (m, 1H), 5.76 (s, 1H), 4.03 (q, $J = 7.1$ Hz, 2H), 2.41 (s, 3H), 1.10 (t, $J = 7.1$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 190.8, 163.7, 158.8, 134.3, 133.6, 133.1, 132.7, 131.9, 126.7, 112.3, 60.8, 15.1, 13.9.
General procedure for synthesis of (Z)-β-methylthio-α,β-unsaturated-γ-keto esters (Path II);

BF$_3$.Et$_2$O (122 µl, 1mmol) was added to a solution of terminal alkyne (102 µL, 1mmol) in DMSO (3 ml) followed by the addition of iodine (126 mg, 1mmol) and ethyl glyoxylate (102 µL, 1mmol). The reaction mixture was heated at 80°C for 18 h and the product formation was monitored by TLC. After completion of reaction, reaction mixture is cooled to room temperature, followed by quenching with 10% Na$_2$S$_2$O$_3$ solution, and extraction with ethyl acetate (3 x 50ml). The combined organic layers were washed with brine solution, concentrated under vacuum and purified by column chromatography using ethyl acetate and hexane to afford corresponding products.

Characterization data:

(Z)-ethyl 3-(methylthio)-4-oxo-4-phenylbut-2-enoate (4ba): 1H NMR (500 MHz, CDCl$_3$) δ 7.93 (d, $J = 7.8$ Hz, 2H), 7.57 (t, $J = 7.4$ Hz, 1H), 7.43 (t, $J = 7.7$ Hz, 2H), 5.82 (s, 1H), 4.15 (q, $J = 7.1$ Hz, 2H), 2.03 (s, 3H), 1.21 (t, $J = 7.1$ Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 191.5, 165.4, 157.9, 134.8, 134.7, 129.9, 129.0, 113.4, 60.5, 14.9, 14.3.

(Z)-ethyl 3-(methylthio)-4-oxo-4-(p-tolyl)but-2-enoate (4bb): 1H NMR (400 MHz, CDCl$_3$) δ 7.91 (d, $J = 8.0$ Hz, 2H), 7.31 (d, $J = 7.9$ Hz, 2H), 5.89 (s, 1H), 4.24 (q, $J = 7.1$ Hz, 2H), 2.42 (d, $J = 17.2$ Hz, 3H), 2.11 (s, 3H), 1.30 (t, $J = 7.1$ Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 191.2, 165.6, 158.2, 145.9, 132.4, 130.1, 129.7, 113.2, 60.5, 21.8, 14.9, 14.3.
(Z)-ethyl 4-(4-(tert-butyl)phenyl)-3-(methylthio)-4-oxobut-2-enoate (4bc): 1H NMR (500 MHz, CDCl$_3$) δ 7.96 (t, J = 7.9 Hz, 2H), 7.53 (t, J = 7.7 Hz, 2H), 5.89 (s, 1H), 4.24 (q, J = 7.1 Hz, 2H), 2.13 (s, 3H), 1.35 (s, 9H), 1.30 (t, J = 7.2 Hz, 3H), 13C NMR (125 MHz, CDCl$_3$) δ 191.2, 165.6, 158.8, 158.3, 132.2, 130.0, 126.0, 113.1, 60.5, 35.4, 31.0, 14.9, 14.3.

(Z)-ethyl 4-(4-methoxyphenyl)-3-(methylthio)-4-oxobut-2-enoate (4bd): 1H NMR (500 MHz, CDCl$_3$) δ 7.99(d, J = 8.9 Hz, 2H), 6.98 (d, J = 8.9 Hz, 2H), 5.89 (s, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.90 (s, 3H), 2.12 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 190.1, 165.7, 164.8, 158.4, 132.5, 127.8, 114.3, 112.9, 60.5, 55.7, 14.9, 14.3.

(Z)-ethyl 4-([1,1'-biphenyl]-4-yl)-3-(methylthio)-4-oxobut-2-enoate (4be): 1H NMR (500 MHz, CDCl$_3$) δ 8.07 (m, 2H), 7.77 (m, 2H), 7.65 (m, 2H), 7.50 (dd, J = 10.2, 4.7 Hz, 2H), 7.44 (m, 1H), 5.95 (s, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.16 (s, 3H), 1.33 (m, 3H); 13C NMR (125 MHz, CDCl$_3$) δ 191.2, 165.7, 158.2, 147.2, 139.4, 133.5, 130.6, 129.1, 128.7, 127.7, 127.3, 113.4, 60.6, 15.0, 14.3.

(Z)-ethyl 4-(2-chlorophenyl)-3-(methylthio)-4-oxobut-2-enoate (4bf): 1H NMR (400 MHz, CDCl$_3$) δ 7.69 (d, J = 7.7 Hz, 1H), 7.49 (q, J = 8.2 Hz, 2H), 7.39 (t, J = 7.1 Hz, 1H), 5.95 (s, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.34 (s, 3H), 1.28 (t,J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl$_3$) δ 191.2, 165.3, 158.2, 135.7, 133.5, 133.3, 131.8, 131.2, 127.0, 117.1, 60.7, 15.5, 14.2.
1H NMR 13C-NMR of 2aa:
1H and 13C-NMR of 2ab:
1H and 13C-NMR of 2ac:
1H and 13C-NMR of 2ad:
1H and 13C-NMR of 2ae:
1H and 13C-NMR of 2af:
1H and 13C-NMR of 2ag:
^1H and ^{13}C-NMR of 2ah
1H and 13C-NMR of 2ai
1H and 13C-NMR of 2ba:
^{1}H and ^{13}C-NMR of 2bb:
1H and 13C-NMR of 2bc:
1H and 13C-NMR of 2bd:
1H and 13C-NMR of 2be:
1H and 13C-NMR of 2bf:
1H and 13C-NMR of 2bg:
1H and 13C-NMR of 2bh
1H and 13C-NMR of 2bi
1H and 13C-NMR spectra of 4aa:
\(^1\)H and \(^{13}\)C-NMR spectra of 4ab:
1H and 13C-NMR spectra of 4ac:
1H and 13C-NMR spectra of 4ad:
1H and 13C-NMR spectra of 4ae:
1H and 13C-NMR spectra of 4af:
1H and 13C-NMR spectra of 4ba:
1H and 13C-NMR spectra of 4bb:
1H and 13C-NMR spectra of 4bc:
1H and 13C-NMR spectra of 4bd:
1H and 13C-NMR spectra of 4be:
1H and 13C-NMR spectra of 4bf:
DMSO-d$_6$ Experiment
Figure: 1NOESY spectrum of compound 4aa. (CDCl$_3$, 400 MHz)
Figure: 2D NOESY spectrum of compound 4ba. (CDCl₃, 400 MHz)