Supporting information

Structure diversity and reversible anion exchange properties of cadmium(II) complexes with 1,3,5-tris(imidazol-1-ylmethyl)benzene: counteranion-directed flexible ligand conformational variation

Guan-Cheng Xu, a Yu-Jie Ding, a Taka-aki Okamura, b Yong-Qing Huang, a Guang-Xiang Liu, a Wei-Yin Sun*,a and Norikazu Ueyama b

a Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
E-mail: sunwy@nju.edu.cn; Tel: +86-25-83593485

b Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
Fig. S1. The ethanol molecules and nitrate anions were filled in channels of the 3D framework of 2.

Fig. S2. Crystal packing diagram of 3 with the hydrogen bonds indicated by the dashed lines.
Fig. S3. The intermolecular hydrogen bonds in the 2D network of 4.

Fig. S4. The hydrogen bonds within the 2D network of 5 indicate in the red dashed lines.
Table S1 Distances (Å) and angles (deg) of hydrogen bonds for complexes 1-6

<table>
<thead>
<tr>
<th>D-H---A</th>
<th>Distance (H---A)</th>
<th>Distance (D---A)</th>
<th>Angle (D-H---A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1-H1---F1#1</td>
<td>2.4900</td>
<td>3.336(4)</td>
<td>152</td>
</tr>
<tr>
<td>C4-H4B---F2#2, 3, 4</td>
<td>2.4800</td>
<td>3.275(4)</td>
<td>139</td>
</tr>
<tr>
<td>Complex 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C6-H3---O11#5</td>
<td>2.5700</td>
<td>3.242(11)</td>
<td>128</td>
</tr>
<tr>
<td>C11-H5---O11#6</td>
<td>2.5200</td>
<td>3.383(10)</td>
<td>146</td>
</tr>
<tr>
<td>C31-H9---O13#7</td>
<td>2.2100</td>
<td>3.109(17)</td>
<td>151</td>
</tr>
<tr>
<td>C31-H10---O13</td>
<td>2.6000</td>
<td>3.550(18)</td>
<td>161</td>
</tr>
<tr>
<td>C31-H10---O22</td>
<td>2.6000</td>
<td>3.31(2)</td>
<td>128</td>
</tr>
<tr>
<td>C52-H16---O12</td>
<td>2.2400</td>
<td>3.133(9)</td>
<td>156</td>
</tr>
<tr>
<td>C54-H18---O11#5</td>
<td>2.4700</td>
<td>3.325(17)</td>
<td>150</td>
</tr>
<tr>
<td>Complex 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5-H25---O1</td>
<td>1.79(3)</td>
<td>2.690(2)</td>
<td>168(3)</td>
</tr>
<tr>
<td>O6-H26---O2</td>
<td>2.01(3)</td>
<td>2.872(3)</td>
<td>175(3)</td>
</tr>
<tr>
<td>O6-H27---O2#8</td>
<td>2.12(3)</td>
<td>2.927(3)</td>
<td>175(2)</td>
</tr>
<tr>
<td>O7-H28---O9</td>
<td>1.85(4)</td>
<td>2.726(3)</td>
<td>175(3)</td>
</tr>
<tr>
<td>O7-H29---O6#9</td>
<td>2.08(3)</td>
<td>2.858(3)</td>
<td>171(4)</td>
</tr>
<tr>
<td>O8-H30---O4</td>
<td>2.03(4)</td>
<td>2.866(3)</td>
<td>159(3)</td>
</tr>
<tr>
<td>O8-H31---O7#10</td>
<td>2(4)</td>
<td>2.849(3)</td>
<td>163(4)</td>
</tr>
<tr>
<td>O9-H32---O5</td>
<td>2.11(4)</td>
<td>2.825(3)</td>
<td>154(4)</td>
</tr>
<tr>
<td>O9-H32---O5</td>
<td>2.11(4)</td>
<td>2.825(3)</td>
<td>154(4)</td>
</tr>
<tr>
<td>O9-H33---O3</td>
<td>1.76(4)</td>
<td>2.694(3)</td>
<td>175(4)</td>
</tr>
<tr>
<td>C12-H6---O8</td>
<td>2.5100</td>
<td>3.365(3)</td>
<td>151</td>
</tr>
<tr>
<td>C13-H7---O7#11</td>
<td>2.5600</td>
<td>3.417(3)</td>
<td>151</td>
</tr>
<tr>
<td>C14-H8---O4#12</td>
<td>2.4900</td>
<td>3.137(3)</td>
<td>125</td>
</tr>
<tr>
<td>Bond Type</td>
<td>Distance (Å)</td>
<td>Angle (°)</td>
<td>Symmetry Transformation</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-----------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>C32-H11---O7#13</td>
<td>2.4500</td>
<td>3.282(3)</td>
<td>#1: 1+ x, y, z. #2: 2/3-x, 1/3-y, 1/3-z. #3: 2/3+y, 1/3-x+y, 1/3-z. #4: 2/3-x+y, 1/3+x, 1/3-z. #5: 3/2-x, 1/2+y, 3/2-z. #6: -1/2+x, 3/2-y, -1/2+z. #7: 3/2-x, 3/2-y, 1-z. #8: 3/2-x, 1/2-y, 1-z. #9: x, 1-y, 1/2+z. #10: 1-x, y, 3/2-z. #11: x, 1-y, -1/2+z. #12: 1-x, 1-y, 1-z. #13: -1/2+x, 1/2-y, -1/2+z. #14: 1/2-x, 1/2-y, 1-z. #15: x, -1+y, z. #16: -1+x, 3/2-y, -1/2+z. #17: 1-x, -1/2+y, 1/2-z. #18: x, 1+y, z. #19: 1+x, -1+y, z. #20: x, 1/2-y, -1/2+z. #21: -x, -1/2+y, 1/2-z. #22: 1-x, 1/2+y, 1/2-z. #23: -1+x, y, z.</td>
</tr>
<tr>
<td>C51-H14---O8#14</td>
<td>2.5700</td>
<td>3.392(3)</td>
<td></td>
</tr>
<tr>
<td>C52-H16---O8#14</td>
<td>2.4200</td>
<td>3.218(4)</td>
<td></td>
</tr>
<tr>
<td>C54-H18---O9#12</td>
<td>2.5600</td>
<td>3.371(4)</td>
<td></td>
</tr>
<tr>
<td>Complex 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C4-H4A---O1#15</td>
<td>2.6000</td>
<td>3.462(9)</td>
<td></td>
</tr>
<tr>
<td>C11-H11A---Cl2</td>
<td>2.7200</td>
<td>3.664(7)</td>
<td></td>
</tr>
<tr>
<td>Complex 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1W-H1WA---Cl1</td>
<td>2.48(4)</td>
<td>3.160(4)</td>
<td></td>
</tr>
<tr>
<td>O1W-H1WB---O2W#16</td>
<td>2.18(6)</td>
<td>2.812(6)</td>
<td></td>
</tr>
<tr>
<td>O2W-H2WB---Cl1#17</td>
<td>2.29(6)</td>
<td>3.164(4)</td>
<td></td>
</tr>
<tr>
<td>O2W-H2WA---N6#18</td>
<td>1.91(4)</td>
<td>2.769(6)</td>
<td></td>
</tr>
<tr>
<td>O3W-H3WA---Cl1#19</td>
<td>2.32(5)</td>
<td>3.191(6)</td>
<td></td>
</tr>
<tr>
<td>O3W-H3WB---O2W#20</td>
<td>2.16(5)</td>
<td>2.955(7)</td>
<td></td>
</tr>
<tr>
<td>C6-H6---Cl1#15</td>
<td>2.6600</td>
<td>3.568(4)</td>
<td></td>
</tr>
<tr>
<td>C12-H12---Cl1#17</td>
<td>2.6100</td>
<td>3.541(4)</td>
<td></td>
</tr>
<tr>
<td>C7-H7B---Cl1#21</td>
<td>2.7800</td>
<td>3.668(4)</td>
<td></td>
</tr>
<tr>
<td>C10-H10---O3W#22</td>
<td>2.5900</td>
<td>3.375(7)</td>
<td></td>
</tr>
<tr>
<td>Complex 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C34-H13---I2</td>
<td>3.110</td>
<td>3.969</td>
<td></td>
</tr>
<tr>
<td>C52-H16---I2#23</td>
<td>3.066</td>
<td>3.896</td>
<td></td>
</tr>
<tr>
<td>C32-H11---I3#23</td>
<td>3.171</td>
<td>3.792</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: #1: 1+x, y, z. #2: 2/3-x, 1/3-y, 1/3-z. #3: 2/3+y, 1/3-x+y, 1/3-z. #4: 2/3-x-y, 1/3+x, 1/3-z. #5: 3/2-x, 1/2+y, 3/2-z. #6: -1/2+x, 3/2-y, -1/2+z. #7: 3/2-x, 3/2-y, 1-z. #8: 3/2-x, 1/2-y, 1-z. #9: x, 1-y, 1/2+z. #10: 1-x, y, 3/2-z. #11: x, 1-y, -1/2+z. #12: 1-x, 1-y, 1-z. #13: -1/2+x, 1/2-y, -1/2+z. #14: 1/2-x, 1/2-y, 1-z. #15: x, -1+y, z. #16: -1+x, 3/2-y, -1/2+z. #17: 1-x, -1/2+y, 1/2-z. #18: x, 1+y, z. #19: 1+x, -1+y, z. #20: x, 1/2-y, -1/2+z. #21: -x, -1/2+y, 1/2-z. #22: 1-x, 1/2+y, 1/2-z. #23: -1+x, y, z.