# Electronic Supplementary Material for CrystEngComm # This journal is (C) The Royal Society of Chemistry 2008 data_global _journal_name_full CrystEngComm _journal_coden_Cambridge 1350 _journal_volume ? _journal_page_first ? _journal_year ? _publ_contact_author_name 'Andrzej Katrusiak' _publ_contact_author_email KATRAN@AMU.EDU.PL _publ_section_title ; Isostructural relations and disproportionation of bromoiodomethane ; _publ_contact_author_fax +48(61)8291505 _publ_contact_author_phone +48(61)8291443 loop_ _publ_author_name Andrzej Katrusiak Marcin Podsiadlo # Attachment 'bjm_all.cif' data_bjm_220K _database_code_depnum_ccdc_archive 'CCDC 681738' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; bromoiodomethane ; _chemical_name_common bromoiodomethane _chemical_melting_point 274 _chemical_formula_moiety 'C1 H2 Br1 I1' _chemical_formula_sum 'C H2 Br I' _chemical_formula_weight 220.84 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'C 2 / c' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' _cell_length_a 12.905(3) _cell_length_b 4.5730(9) _cell_length_c 16.072(3) _cell_angle_alpha 90.00 _cell_angle_beta 114.79(3) _cell_angle_gamma 90.00 _cell_volume 861.1(3) _cell_formula_units_Z 8 _cell_measurement_temperature 220.0(1) _cell_measurement_reflns_used 1280 _cell_measurement_theta_min 2.79 _cell_measurement_theta_max 29.06 _exptl_crystal_description irregular _exptl_crystal_colour colourless _exptl_crystal_size_max 0.20 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.407 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 768 _exptl_absorpt_coefficient_mu 16.483 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.04 _exptl_absorpt_correction_T_max 0.05 _exptl_absorpt_process_details ; Correction for absorption was made using XEMP (SHELXTL, Sheldrick (1990)). ; _exptl_special_details ; Data were collected at ambient pressure (100 kPa) and 220 K with the crystal obtained by the in-situ low-temperature crystallization technique. ; # EXPERIMENTAL DATA _diffrn_ambient_temperature 295(2) _diffrn_ambient_pressure 100 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method \w-scans _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 2792 _diffrn_reflns_av_R_equivalents 0.1755 _diffrn_reflns_av_sigmaI/netI 0.1153 _diffrn_reflns_limit_h_min -17 _diffrn_reflns_limit_h_max 16 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -19 _diffrn_reflns_limit_l_max 21 _diffrn_reflns_theta_min 2.79 _diffrn_reflns_theta_max 29.06 _reflns_number_total 1088 _reflns_number_gt 818 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The restrains applied were that the disordered Br and I atoms had the same xyz and Uanis parameters for Br1 and I1, and separately for Br2 and I2. the SOF were bound by the SOF(Be)+SOF(I)=1 relation. The H-atom was calculated from molecular geometry (fixed by ideallized disatances). ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0611P)^2^+0.0000P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0045(8) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 1088 _refine_ls_number_parameters 36 _refine_ls_number_restraints 6 _refine_ls_R_factor_all 0.0892 _refine_ls_R_factor_gt 0.0662 _refine_ls_wR_factor_ref 0.1660 _refine_ls_wR_factor_gt 0.1507 _refine_ls_goodness_of_fit_ref 1.159 _refine_ls_restrained_S_all 1.155 _refine_ls_shift/su_max 0.004 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.09449(3) 0.66904(18) 0.13187(5) 0.0524(4) Uani 0.648(5) 1 d PD . . Br1 Br 0.09449(3) 0.66904(18) 0.13187(5) 0.0524(4) Uani 0.352(5) 1 d P . . I2 I 0.35471(3) 0.6451(2) 0.12898(6) 0.0518(5) Uani 0.352(5) 1 d PD . . Br2 Br 0.35471(3) 0.6451(2) 0.12898(6) 0.0518(5) Uani 0.648(5) 1 d P . . C1 C 0.2110(8) 0.42786(19) 0.10694(19) 0.052(3) Uani 1 1 d D . . H1 H 0.17525(16) 0.3501(9) 0.0407(3) 0.062 Uiso 1 1 d D . . H2 H 0.23045(17) 0.2403(2) 0.1460(3) 0.062 Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0415(5) 0.0542(6) 0.0649(7) -0.0088(4) 0.0255(4) -0.0060(3) Br1 0.0415(5) 0.0542(6) 0.0649(7) -0.0088(4) 0.0255(4) -0.0060(3) I2 0.0314(5) 0.0562(7) 0.0619(7) -0.0002(4) 0.0138(4) 0.0013(3) Br2 0.0314(5) 0.0562(7) 0.0619(7) -0.0002(4) 0.0138(4) 0.0013(3) C1 0.051(6) 0.042(5) 0.060(6) -0.005(5) 0.021(5) 0.001(5) # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 C1 2.036(8) . ? Br1 C1 2.036(8) . ? I2 C1 2.000(8) . ? Br2 C1 2.000(8) . ? C1 H1 1.0300(3) . ? C1 H2 1.03000(17) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Br2 C1 I2 0.00(7) . . ? Br2 C1 I1 113.74(7) . . ? I2 C1 I1 113.74(7) . . ? Br2 C1 Br1 113.74(7) . . ? I2 C1 Br1 113.74(7) . . ? I1 C1 Br1 0.00(4) . . ? Br2 C1 H1 109.6(6) . . ? I2 C1 H1 109.6(6) . . ? I1 C1 H1 110.0(6) . . ? Br1 C1 H1 110.0(6) . . ? Br2 C1 H2 109.6(6) . . ? I2 C1 H2 109.6(6) . . ? I1 C1 H2 110.0(6) . . ? Br1 C1 H2 110.0(6) . . ? H1 C1 H2 103.4(3) . . ? _diffrn_measured_fraction_theta_max 0.942 _diffrn_reflns_theta_full 29.06 _diffrn_measured_fraction_theta_full 0.942 _refine_diff_density_max 1.437 _refine_diff_density_min -1.309 _refine_diff_density_rms 0.294 ############################################################################# data_bjm_100K _database_code_depnum_ccdc_archive 'CCDC 681739' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; bromoiodomethane ; _chemical_name_common bromoiodomethane _chemical_melting_point 274 _chemical_formula_moiety 'C1 H2 Br1 I1' _chemical_formula_sum 'C H2 Br I' _chemical_formula_weight 220.84 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'C 2 / c' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' _cell_length_a 12.817(3) _cell_length_b 4.5223(9) _cell_length_c 15.757(3) _cell_angle_alpha 90.00 _cell_angle_beta 114.45(3) _cell_angle_gamma 90.00 _cell_volume 831.4(3) _cell_formula_units_Z 8 _cell_measurement_temperature 100.0(1) _cell_measurement_reflns_used 2420 _cell_measurement_theta_min 2.84 _cell_measurement_theta_max 29.68 _exptl_crystal_description irregular _exptl_crystal_colour colourless _exptl_crystal_size_max 0.20 _exptl_crystal_size_mid 0.20 _exptl_crystal_size_min 0.20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.529 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 768 _exptl_absorpt_coefficient_mu 17.072 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.04 _exptl_absorpt_correction_T_max 0.05 _exptl_absorpt_process_details ; Correction for absorption was made using XEMP (SHELXTL, Sheldrick (1990)). ; _exptl_special_details ; Data were collected at ambient pressure (100 kPa) and 100 K with the crystal obtained by the in-situ low-temperature crystallization technique. ; # EXPERIMENTAL DATA _diffrn_ambient_temperature 295(2) _diffrn_ambient_pressure 100 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method \w-scans _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 3568 _diffrn_reflns_av_R_equivalents 0.2106 _diffrn_reflns_av_sigmaI/netI 0.1026 _diffrn_reflns_limit_h_min -16 _diffrn_reflns_limit_h_max 15 _diffrn_reflns_limit_k_min -5 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -21 _diffrn_reflns_limit_l_max 17 _diffrn_reflns_theta_min 2.84 _diffrn_reflns_theta_max 29.68 _reflns_number_total 1069 _reflns_number_gt 975 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The restrains applied were that the disordered Br and I atoms had the same xyz and Uanis parameters for Br1 and I1, and separately for Br2 and I2. the SOF were bound by the SOF(Be)+SOF(I)=1 relation. The H-atom was calculated from molecular geometry (fixed by ideallized disatances). ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0282P)^2^+20.0717P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0036(4) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 1069 _refine_ls_number_parameters 36 _refine_ls_number_restraints 6 _refine_ls_R_factor_all 0.0646 _refine_ls_R_factor_gt 0.0570 _refine_ls_wR_factor_ref 0.1255 _refine_ls_wR_factor_gt 0.1200 _refine_ls_goodness_of_fit_ref 1.116 _refine_ls_restrained_S_all 1.113 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.09248(3) 0.68029(14) 0.13107(4) 0.0233(3) Uani 0.662(5) 1 d PD . . Br1 Br 0.09248(3) 0.68029(14) 0.13107(4) 0.0233(3) Uani 0.338(5) 1 d P . . I2 I 0.35594(3) 0.65873(17) 0.12886(5) 0.0244(3) Uani 0.338(5) 1 d PD . . Br2 Br 0.35594(3) 0.65873(17) 0.12886(5) 0.0244(3) Uani 0.662(5) 1 d P . . C1 C 0.2132(5) 0.4241(2) 0.1072(2) 0.0299(19) Uani 1 1 d D . . H1 H 0.17570(16) 0.3625(10) 0.0381(3) 0.036 Uiso 1 1 d D . . H2 H 0.23518(18) 0.2537(3) 0.1548(3) 0.036 Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0181(4) 0.0265(4) 0.0256(4) -0.0040(2) 0.0093(2) -0.0029(2) Br1 0.0181(4) 0.0265(4) 0.0256(4) -0.0040(2) 0.0093(2) -0.0029(2) I2 0.0131(4) 0.0287(5) 0.0260(4) 0.0002(3) 0.0025(3) 0.0011(3) Br2 0.0131(4) 0.0287(5) 0.0260(4) 0.0002(3) 0.0025(3) 0.0011(3) C1 0.021(4) 0.024(4) 0.033(4) -0.011(4) 0.000(3) -0.002(3) # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 C1 2.087(6) . ? Br1 C1 2.087(6) . ? I2 C1 2.018(6) . ? Br2 C1 2.018(6) . ? C1 H1 1.0300(3) . ? C1 H2 1.03000(18) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Br2 C1 I2 0.00(5) . . ? Br2 C1 I1 111.44(7) . . ? I2 C1 I1 111.44(7) . . ? Br2 C1 Br1 111.44(7) . . ? I2 C1 Br1 111.44(7) . . ? I1 C1 Br1 0.00(3) . . ? Br2 C1 H1 108.3(4) . . ? I2 C1 H1 108.3(4) . . ? I1 C1 H1 106.5(4) . . ? Br1 C1 H1 106.5(4) . . ? Br2 C1 H2 108.3(4) . . ? I2 C1 H2 108.3(4) . . ? I1 C1 H2 106.5(4) . . ? Br1 C1 H2 106.5(4) . . ? H1 C1 H2 115.7(3) . . ? _diffrn_measured_fraction_theta_max 0.911 _diffrn_reflns_theta_full 29.68 _diffrn_measured_fraction_theta_full 0.911 _refine_diff_density_max 1.469 _refine_diff_density_min -2.283 _refine_diff_density_rms 0.371 ############################################################################# data_bjm_0.54GPa _database_code_depnum_ccdc_archive 'CCDC 681740' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; bromoiodomethane ; _chemical_name_common bromoiodomethane _chemical_melting_point 274 _chemical_formula_moiety 'C1 H2 Br1 I1' _chemical_formula_sum 'C H2 Br I' _chemical_formula_weight 220.84 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Br Br -0.2901 2.4595 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting monoclinic _symmetry_space_group_name_H-M 'C 2 / c' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, y, -z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, y+1/2, -z+1/2' '-x, -y, -z' 'x, -y, z-1/2' '-x+1/2, -y+1/2, -z' 'x+1/2, -y+1/2, z-1/2' _cell_length_a 12.649(3) _cell_length_b 4.4767(9) _cell_length_c 15.425(3) _cell_angle_alpha 90.00 _cell_angle_beta 112.98(3) _cell_angle_gamma 90.00 _cell_volume 804.1(3) _cell_formula_units_Z 8 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 2470 _cell_measurement_theta_min 3.50 _cell_measurement_theta_max 29.70 _exptl_crystal_description cylinder _exptl_crystal_colour colourless _exptl_crystal_size_max 0.50 _exptl_crystal_size_mid 0.50 _exptl_crystal_size_min 0.08 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 3.648 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 768 _exptl_absorpt_coefficient_mu 17.652 _exptl_absorpt_correction_type analytical _exptl_absorpt_correction_T_min 0.09 _exptl_absorpt_correction_T_max 0.29 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 0.54(5) GPa (540000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 540000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 3147 _diffrn_reflns_av_R_equivalents 0.0388 _diffrn_reflns_av_sigmaI/netI 0.0151 _diffrn_reflns_limit_h_min -17 _diffrn_reflns_limit_h_max 16 _diffrn_reflns_limit_k_min -6 _diffrn_reflns_limit_k_max 6 _diffrn_reflns_limit_l_min -8 _diffrn_reflns_limit_l_max 8 _diffrn_reflns_theta_min 3.50 _diffrn_reflns_theta_max 29.70 _reflns_number_total 369 _reflns_number_gt 330 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. The restrains applied were that the disordered Br and I atoms had the same xyz and Uanis parameters for Br1 and I1, and separately for Br2 and I2. the SOF were bound by the SOF(Be)+SOF(I)=1 relation. The H-atom was calculated from molecular geometry (fixed by ideallized disatances). ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0376P)^2^+1.4443P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0041(4) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 369 _refine_ls_number_parameters 36 _refine_ls_number_restraints 6 _refine_ls_R_factor_all 0.0325 _refine_ls_R_factor_gt 0.0268 _refine_ls_wR_factor_ref 0.0698 _refine_ls_wR_factor_gt 0.0662 _refine_ls_goodness_of_fit_ref 1.172 _refine_ls_restrained_S_all 1.162 _refine_ls_shift/su_max 0.006 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.08799(3) 0.67800(10) 0.12950(8) 0.0525(12) Uani 0.587(4) 1 d PD . . Br1 Br 0.08799(3) 0.67800(10) 0.12950(8) 0.0525(12) Uani 0.413(4) 1 d P . . I2 I 0.35414(3) 0.65609(11) 0.13041(9) 0.0529(12) Uani 0.413(4) 1 d PD . . Br2 Br 0.35414(3) 0.65609(11) 0.13041(9) 0.0529(12) Uani 0.587(4) 1 d P . . C1 C 0.2082(5) 0.42797(10) 0.1069(2) 0.063(10) Uani 1 1 d D . . H1 H 0.17715(17) 0.3478(10) 0.0389(3) 0.075 Uiso 1 1 d D . . H2 H 0.22802(15) 0.24085(19) 0.1491(3) 0.075 Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0464(5) 0.0532(4) 0.065(3) -0.0082(4) 0.0298(11) -0.0061(2) Br1 0.0464(5) 0.0532(4) 0.065(3) -0.0082(4) 0.0298(11) -0.0061(2) I2 0.0353(5) 0.0572(4) 0.062(4) 0.0009(4) 0.0151(11) 0.0010(2) Br2 0.0353(5) 0.0572(4) 0.062(4) 0.0009(4) 0.0151(11) 0.0010(2) C1 0.055(5) 0.040(3) 0.09(3) -0.010(5) 0.029(11) -0.002(3) # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 C1 2.025(5) . ? Br1 C1 2.025(5) . ? I2 C1 2.015(5) . ? Br2 C1 2.015(5) . ? C1 H1 1.0300(3) . ? C1 H2 1.03000(17) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Br2 C1 I2 0.00(8) . . ? Br2 C1 I1 112.68(6) . . ? I2 C1 I1 112.68(6) . . ? Br2 C1 Br1 112.68(6) . . ? I2 C1 Br1 112.68(6) . . ? I1 C1 Br1 0.00(6) . . ? Br2 C1 H1 108.6(4) . . ? I2 C1 H1 108.6(4) . . ? I1 C1 H1 110.8(4) . . ? Br1 C1 H1 110.8(4) . . ? Br2 C1 H2 108.6(4) . . ? I2 C1 H2 108.6(4) . . ? I1 C1 H2 110.8(4) . . ? Br1 C1 H2 110.8(4) . . ? H1 C1 H2 105.2(3) . . ? _diffrn_measured_fraction_theta_max 0.322 _diffrn_reflns_theta_full 29.70 _diffrn_measured_fraction_theta_full 0.322 _refine_diff_density_max 0.312 _refine_diff_density_min -0.378 _refine_diff_density_rms 0.094 ############################################################################# data_djm_0.80GPa _database_code_depnum_ccdc_archive 'CCDC 681741' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; diiodomethane, polymorph II ; _chemical_name_common 'diiodomethane, polymorph II' _chemical_melting_point 279 _chemical_formula_moiety 'C1 H2 I2' _chemical_formula_sum 'C H2 I2' _chemical_formula_weight 267.83 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' I I -0.4742 1.8119 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'F m m 2' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' 'x, -y, z' '-x, y, z' 'x, y+1/2, z+1/2' '-x, -y+1/2, z+1/2' 'x, -y+1/2, z+1/2' '-x, y+1/2, z+1/2' 'x+1/2, y, z+1/2' '-x+1/2, -y, z+1/2' 'x+1/2, -y, z+1/2' '-x+1/2, y, z+1/2' 'x+1/2, y+1/2, z' '-x+1/2, -y+1/2, z' 'x+1/2, -y+1/2, z' '-x+1/2, y+1/2, z' _cell_length_a 7.0153(14) _cell_length_b 12.599(3) _cell_length_c 4.5877(9) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 405.49(14) _cell_formula_units_Z 4 _cell_measurement_temperature 295(2) _cell_measurement_reflns_used 723 _cell_measurement_theta_min 5.55 _cell_measurement_theta_max 28.62 _exptl_crystal_description cylinder _exptl_crystal_colour colourless _exptl_crystal_size_max 0.45 _exptl_crystal_size_mid 0.44 _exptl_crystal_size_min 0.08 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 4.387 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 456 _exptl_absorpt_coefficient_mu 15.263 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.11 _exptl_absorpt_correction_T_max 0.21 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 0.80(5) GPa (800000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 800000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 867 _diffrn_reflns_av_R_equivalents 0.0431 _diffrn_reflns_av_sigmaI/netI 0.0298 _diffrn_reflns_limit_h_min -9 _diffrn_reflns_limit_h_max 9 _diffrn_reflns_limit_k_min -3 _diffrn_reflns_limit_k_max 3 _diffrn_reflns_limit_l_min -6 _diffrn_reflns_limit_l_max 6 _diffrn_reflns_theta_min 5.55 _diffrn_reflns_theta_max 28.62 _reflns_number_total 92 _reflns_number_gt 87 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction, 2004)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction, 2004)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction, 2004); REDSHABS (Katrusiak, A. 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 1997)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 1997)' _computing_molecular_graphics 'SHELXTL (Sheldrick, 1990)' _computing_publication_material 'SHELXL--97 (Sheldrick, 1997)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0000P)^2^+17.9963P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.0121(13) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_abs_structure_details 'Flack H D (1983), Acta Cryst. A39, 876-881' _refine_ls_abs_structure_Flack 0.3(8) _refine_ls_number_reflns 92 _refine_ls_number_parameters 14 _refine_ls_number_restraints 3 _refine_ls_R_factor_all 0.0461 _refine_ls_R_factor_gt 0.0407 _refine_ls_wR_factor_ref 0.0518 _refine_ls_wR_factor_gt 0.0506 _refine_ls_goodness_of_fit_ref 1.230 _refine_ls_restrained_S_all 1.207 _refine_ls_shift/su_max 0.005 _refine_ls_shift/su_mean 0.001 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group I1 I 0.0000 0.13756(5) 0.26654(9) 0.045(3) Uani 1 2 d SD . . C1 C 0.0000 0.0000 -0.02880(16) 0.06(9) Uani 1 4 d SD . . H1 H 0.13280(10) 0.0000 -0.1138(2) 0.084 Uiso 1 2 d SD . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 I1 0.0467(11) 0.042(9) 0.0462(11) 0.012(7) 0.000 0.000 C1 0.04(2) 0.1(3) 0.06(3) 0.000 0.000 0.000 # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag I1 C1 2.2000(9) . ? C1 I1 2.2000(9) 2 ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag I1 C1 I1 103.97(5) . 2 ? _diffrn_measured_fraction_theta_max 0.305 _diffrn_reflns_theta_full 28.62 _diffrn_measured_fraction_theta_full 0.305 _refine_diff_density_max 0.540 _refine_diff_density_min -0.502 _refine_diff_density_rms 0.136 #############################################################################