Supplementary Material for CrystEngComm
This journal is (c) The Royal Society of Chemistry 2009

Supplementary Materials
for

Hydrothermal Chemistry of Vanadium Oxides with Aromatic di- and tri-Phosphonates in the Presence of Secondary Metal-Organic Subunits

Paul DeBurgomaster, Wayne Ouellette, Hongxue Liu, Charles J. O’Connor and Jon Zubieta

I. ORTEP Figures: S1 to S21.

II. Magnetic Susceptibility Plots: S22 to S36.
Figure S1. ORTEP plot of the asymmetric unit of compound 1, showing the 50% thermal ellipsoids.
Figure S2. ORTEP plot of the asymmetric unit of compound 2, showing the 50% thermal ellipsoids.
Figure S3. ORTEP plot of the asymmetric unit of compound 3, showing the 50% thermal ellipsoids.
Figure S4. ORTEP plot of the asymmetric unit of compound 4, showing the 50% thermal ellipsoids.
Figure S5. ORTEP plot of the asymmetric unit of compound 5, showing the 50% thermal ellipsoids.
Figure S6. ORTEP plot of the asymmetric unit of compound 6, showing the 50% thermal ellipsoids.
Figure S7. ORTEP plot of the asymmetric unit of compound 7a, showing the 50% thermal ellipsoids.
Figure S8. ORTEP plot of the asymmetric unit of compound 7b, showing the 50% thermal ellipsoids.
Figure S9. ORTEP plot of the asymmetric unit of compound 8, showing the 50% thermal ellipsoids.
Figure S10. ORTEP plot of the asymmetric unit of compound 9, showing the 50% thermal ellipsoids.
Figure S11. ORTEP plot of the asymmetric unit of compound 10, showing the 50% thermal ellipsoids.
Figure S12. ORTEP plot of the asymmetric unit of compound 11, showing the 50% thermal ellipsoids.
Figure S13. ORTEP plot of the asymmetric unit of compound 12, showing the 50% thermal ellipsoids.
Figure S14. ORTEP plot of the asymmetric unit of compound 13, showing the 50% thermal ellipsoids.
Figure S15. ORTEP plot of the asymmetric unit of compound 14, showing the 50% thermal ellipsoids.
Figure S16. ORTEP plot of the asymmetric unit of compound **15**, showing the 50% thermal ellipsoids.
Figure S17. ORTEP plot of the asymmetric unit of compound 16, showing the 50% thermal ellipsoids.
Figure S18. ORTEP plot of the asymmetric unit of compound 17, showing the 50% thermal ellipsoids.
Figure S19. ORTEP plot of the asymmetric unit of compound 18, showing the 50% thermal ellipsoids.
Figure S20. ORTEP plot of the asymmetric unit of compound 19, showing the 50% thermal ellipsoids.
Figure S21. ORTEP plot of the asymmetric unit of compound 20, showing the 50% thermal ellipsoids.
Figure S22. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 2 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S23. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 3 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S24. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 4 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S25. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 5 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S26. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 6 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S27. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 7a in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S28. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 8 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S29. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 9 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S30. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 10 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S31. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 11 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S32. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 15 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S33. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 16 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S34. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 18 in the 2-300 K temperature range. The inset shows the temperature dependence of the susceptibility χ in the 2-25 K temperature range.
Figure S35. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 19 in the 2-300 K temperature range. The inset shows the temperature dependence of the inverse susceptibility $1/\chi_0$.
Figure S36. The temperature dependence of the magnetic susceptibility χ (red circles) and of the effective magnetic moment μ_{eff} (blue diamonds) of compound 20 in the 2-300 K temperature range. The inset shows the temperature dependence of the susceptibility χ in the 2-30 K temperature range.