Localized Crystallization: A Chemical Transformation of Nb$_2$O$_5$ Rod-Like Arrays into Ordered Niobate Arrays

Junshu Wu and Dongfeng Xue*

State Key Lab of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, China

*Corresponding author: dfxue@dlut.edu.cn
Fig. S1. TEM image of a NaNb$_3$O$_8$ microtube showing that the wall is porous.
Fig. S2. The side view of NaNb$_3$O$_8$ microtubes without (a) and with (b) top caps.
Fig. S3. EDX spectra of the core/shell structures emphasizing the compositional difference of Nb$_2$O$_5$ core (a) and NaNb$_3$O$_8$ shell (b).
Fig. S4. (a) Quick dissolution process results in poor structural strength of the thin shells collapse. (b) Slow dissolution process renders the growth of NaNb$_2$O$_8$ in nanoscale voids and the shells become thick, restraining hollowing process. The NH$_4$F concentration was a) 1.8 M and b) 1.0 M.
Fig. S5. SEM images of sodium niobate thin film produced without the addition of NH$_4$F.
Fig. S6. SEM images of broken NaNbO$_3$ hierarchical microrods from A-Sample Nb$_2$O$_5$.
Fig. S7. A cross section image of the free-standing KNMT thin film.
Fig. S8. XRD pattern of the as-obtained KNMT arrays showing that it is completely identical to K$_2$Ta$_2$O$_6$ (JCPDS Card No. 35-1464), which indicating the resemblance of the crystal structure. The peaks labeled with black triangles correspond to the diffraction peak of Nb substrate.
Fig. S9. EDX pattern for the as-obtained KNMT.
Fig. S10. SEM images of potassium niobate thin film produced at lower KOH concentration (0.15–0.25 M) with other reaction conditions unchanged.