# Supplementary Material (ESI) for CrystEngComm # This journal is (c) The Royal Society of Chemistry 2010 data_global _journal_name_full CrystEngComm _journal_coden_Cambridge 1350 #TrackingRef '- 111TCE.cif' _audit_update_record ; 2010-07-16 # Formatted by publCIF ; _audit_creation_method SHELXL-97 # PROCESSING SUMMARY ( IUCr Office Use Only) _journal_date_recd_electronic ? _journal_date_from_coeditor ? _journal_date_accepted ? _journal_coeditor_code ? # SUBMISSION DETAILS _publ_contact_author_name 'Andrzej Katrusiak' _publ_contact_author_address ; Faculty of Chemistry Adam Mickiewicz University Grunwaldzka 6 60-780 Pozna\'n Poland ; _publ_contact_author_email katran@amu.edu.pl _publ_contact_letter ; Please consider this CIF submission for publication in Chemical Communications ; _publ_requested_category FO _publ_requested_coeditor_name ? # TITLE AND AUTHOR LIST _publ_section_title ; Crystalline gas of 1,1,1-trichloroethane ; loop_ _publ_author_name _publ_author_address M.Bujak ; Faculty of Chemistry University of Opole Oleska 48 45-052 Opole Poland ; M.Podsiadlo ; Faculty of Chemistry Adam Mickiewicz University Grunwaldzka 6 60-780 Pozna\'n Poland ; A.Katrusiak ; Faculty of Chemistry Adam Mickiewicz University Grunwaldzka 6 60-780 Pozna\'n Poland ; ############################################################################# data_111TCE_220K _database_code_depnum_ccdc_archive 'CCDC 784823' #TrackingRef '- 111TCE.cif' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1,1,1-trichloroethane ; _chemical_name_common 1,1,1-trichloroethane _chemical_melting_point 242.8 _chemical_formula_moiety 'C2 H3 Cl3' _chemical_formula_sum 'C2 H3 Cl3' _chemical_formula_weight 133.39 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P n m a' _symmetry_space_group_name_Hall '-P 2ac 2n' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z' '-x-1/2, y-1/2, z-1/2' _cell_length_a 11.5520(10) _cell_length_b 8.0069(7) _cell_length_c 5.8733(4) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 543.26(8) _cell_formula_units_Z 4 _cell_measurement_temperature 220.0(1) _cell_measurement_pressure 100 _cell_measurement_reflns_used 804 _cell_measurement_theta_min 3.09 _cell_measurement_theta_max 28.97 _exptl_crystal_description irregular _exptl_crystal_colour colourless _exptl_crystal_size_max 0.30 _exptl_crystal_size_mid 0.30 _exptl_crystal_size_min 0.10 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.631 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 264 _exptl_absorpt_coefficient_mu 1.516 _exptl_absorpt_correction_type multi-scan _exptl_absorpt_correction_T_min 0.6591 _exptl_absorpt_correction_T_max 0.8632 _exptl_absorpt_process_details ; Correction for absorption was made using CrysAlisPro, Oxford Diffraction Ltd. (2009) ; _exptl_special_details ; Data were collected at ambient pressure (100 kPa) and 220.0(1) K with the crystal obtained by the in-situ low-temperature crystallization technique. ; # EXPERIMENTAL DATA _diffrn_ambient_temperature 220.0(1) _diffrn_ambient_pressure 100 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'Oxford Diffraction Xcalibur E' _diffrn_measurement_method \w-scans _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 1302 _diffrn_reflns_av_R_equivalents 0.0184 _diffrn_reflns_av_sigmaI/netI 0.0234 _diffrn_reflns_limit_h_min -4 _diffrn_reflns_limit_h_max 13 _diffrn_reflns_limit_k_min -9 _diffrn_reflns_limit_k_max 4 _diffrn_reflns_limit_l_min -4 _diffrn_reflns_limit_l_max 7 _diffrn_reflns_theta_min 3.53 _diffrn_reflns_theta_max 25.03 _reflns_number_total 515 _reflns_number_gt 393 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'CrysAlisPro (Oxford Diffraction Ltd, 2009)' _computing_cell_refinement 'CrysAlisPro (Oxford Diffraction Ltd, 2009)' _computing_data_reduction 'CrysAlisPro (Oxford Diffraction Ltd, 2009)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 2008)' _computing_molecular_graphics 'Mercury (Macrae at al., 2008)' _computing_publication_material 'SHELXL--97 (Sheldrick, 2008)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0544P)^2^] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens difmap _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_number_reflns 515 _refine_ls_number_parameters 33 _refine_ls_number_restraints 2 _refine_ls_R_factor_all 0.0432 _refine_ls_R_factor_gt 0.0329 _refine_ls_wR_factor_ref 0.0866 _refine_ls_wR_factor_gt 0.0837 _refine_ls_goodness_of_fit_ref 0.999 _refine_ls_restrained_S_all 1.003 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 _publ_section_exptl_refinement ; All hydrogen atoms, in the low-temperature structure at 220 K/0.1 MPa, were located in the subsequent difference Fourier maps, refined and geometrically restrained to the same distance (DFIX command of SHELXL97). The positions of H-atoms, in the high-pressure structures, were taken from the low-temperature model and refined using geometrical restrains similar to the low-temperature structure refinement. The H-atoms displacement parameters, in all structures, were taken with coefficients 1.5 times larger than the respective parameters of the C atoms. ; # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.65382(7) 0.07124(10) 0.19135(13) 0.0628(3) Uani 1 1 d . . . Cl2 Cl 0.61834(11) 0.2500 0.60763(15) 0.0656(4) Uani 1 2 d S . . C1 C 0.5873(3) 0.2500 0.3119(5) 0.0395(8) Uani 1 2 d S . . C2 C 0.4599(4) 0.2500 0.2702(8) 0.0587(11) Uani 1 2 d SD . . H1 H 0.444(4) 0.2500 0.109(3) 0.088 Uiso 1 2 d SD . . H2 H 0.428(3) 0.152(3) 0.338(5) 0.088 Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0643(5) 0.0580(5) 0.0663(6) -0.0176(3) 0.0014(3) 0.0136(4) Cl2 0.0916(9) 0.0687(7) 0.0365(6) 0.000 -0.0037(5) 0.000 C1 0.043(2) 0.041(2) 0.0353(17) 0.000 0.0031(14) 0.000 C2 0.039(2) 0.055(3) 0.081(3) 0.000 -0.009(2) 0.000 # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1 1.772(2) . ? Cl2 C1 1.773(3) . ? C1 C2 1.492(5) . ? C2 H1 0.96(2) . ? C2 H2 0.96(1) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 Cl1 111.22(16) . . ? Cl1 C1 Cl1 107.75(18) 7_565 . ? C2 C1 Cl2 111.1(3) . . ? Cl1 C1 Cl2 107.69(14) . . ? C1 C2 H1 110(3) . . ? C1 C2 H2 108(2) . . ? H1 C2 H2 110(2) . . ? _diffrn_measured_fraction_theta_max 0.998 _diffrn_reflns_theta_full 25.03 _diffrn_measured_fraction_theta_full 0.998 _refine_diff_density_max 0.313 _refine_diff_density_min -0.250 _refine_diff_density_rms 0.060 ############################################################################# data_111TCE_0.75GPa _database_code_depnum_ccdc_archive 'CCDC 784824' #TrackingRef '- 111TCE.cif' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1,1,1-trichloroethane ; _chemical_name_common 1,1,1-trichloroethane _chemical_melting_point 242.8 _chemical_formula_moiety 'C2 H3 Cl3' _chemical_formula_sum 'C2 H3 Cl3' _chemical_formula_weight 133.39 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P n m a' _symmetry_space_group_name_Hall '-P 2ac 2n' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z' '-x-1/2, y-1/2, z-1/2' _cell_length_a 11.266(2) _cell_length_b 7.748(8) _cell_length_c 5.7183(12) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 499.1(5) _cell_formula_units_Z 4 _cell_measurement_temperature 295(2) _cell_measurement_pressure 750000 _cell_measurement_reflns_used 1471 _cell_measurement_theta_min 3.61 _cell_measurement_theta_max 27.01 _exptl_crystal_description prism _exptl_crystal_colour colourless _exptl_crystal_size_max 0.36 _exptl_crystal_size_mid 0.22 _exptl_crystal_size_min 0.20 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.775 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 264 _exptl_absorpt_coefficient_mu 1.650 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.239 _exptl_absorpt_correction_T_max 0.665 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 0.75(5) GPa (750000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 750000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 2106 _diffrn_reflns_av_R_equivalents 0.1432 _diffrn_reflns_av_sigmaI/netI 0.0507 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -4 _diffrn_reflns_limit_k_max 4 _diffrn_reflns_limit_l_min -6 _diffrn_reflns_limit_l_max 6 _diffrn_reflns_theta_min 3.62 _diffrn_reflns_theta_max 25.05 _reflns_number_total 213 _reflns_number_gt 203 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction Ltd, 2009)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction Ltd, 2009)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction Ltd, 2009); REDSHABS (Katrusiak, A., 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 2008)' _computing_molecular_graphics 'Mercury (Macrae at al., 2008)' _computing_publication_material 'SHELXL--97 (Sheldrick, 2008)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0203P)^2^+1.4299P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.21(3) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 213 _refine_ls_number_parameters 34 _refine_ls_number_restraints 14 _refine_ls_R_factor_all 0.0628 _refine_ls_R_factor_gt 0.0586 _refine_ls_wR_factor_ref 0.1141 _refine_ls_wR_factor_gt 0.1130 _refine_ls_goodness_of_fit_ref 1.256 _refine_ls_restrained_S_all 1.222 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.65244(16) 0.0641(5) 0.1905(3) 0.0551(18) Uani 1 1 d . . . Cl2 Cl 0.6172(3) 0.2500 0.6184(4) 0.056(3) Uani 1 2 d S . . C1 C 0.5861(7) 0.2500 0.3134(14) 0.037(4) Uani 1 2 d SU . . C2 C 0.4523(9) 0.2500 0.2743(19) 0.045(4) Uani 1 2 d SDU . . H1 H 0.439(8) 0.2500 0.109(4) 0.068 Uiso 1 2 d SD . . H2 H 0.421(7) 0.146(6) 0.339(12) 0.068 Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0561(16) 0.052(6) 0.0575(13) -0.0151(15) 0.0024(7) 0.0111(15) Cl2 0.081(2) 0.053(8) 0.0333(14) 0.000 -0.0049(10) 0.000 C1 0.038(5) 0.040(11) 0.032(4) 0.000 0.002(3) 0.000 C2 0.037(5) 0.040(11) 0.059(5) 0.000 -0.008(4) 0.000 # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1 1.768(6) . ? Cl2 C1 1.779(8) . ? C1 C2 1.524(13) . ? C2 H1 0.96(2) . ? C2 H2 0.96(2) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 Cl1 111.1(4) . . ? Cl1 C1 Cl1 109.1(5) 7_565 . ? C2 C1 Cl2 109.8(7) . . ? Cl1 C1 Cl2 107.8(3) . . ? C1 C2 H1 108(6) . . ? C1 C2 H2 108(5) . . ? H1 C2 H2 109(5) . . ? _diffrn_measured_fraction_theta_max 0.443 _diffrn_reflns_theta_full 25.05 _diffrn_measured_fraction_theta_full 0.443 _refine_diff_density_max 0.242 _refine_diff_density_min -0.306 _refine_diff_density_rms 0.062 ############################################################################# data_111TCE_1.15GPa _database_code_depnum_ccdc_archive 'CCDC 784825' #TrackingRef '- 111TCE.cif' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1,1,1-trichloroethane ; _chemical_name_common 1,1,1-trichloroethane _chemical_melting_point 242.8 _chemical_formula_moiety 'C2 H3 Cl3' _chemical_formula_sum 'C2 H3 Cl3' _chemical_formula_weight 133.39 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P n m a' _symmetry_space_group_name_Hall '-P 2ac 2n' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z' '-x-1/2, y-1/2, z-1/2' _cell_length_a 11.0912(19) _cell_length_b 7.588(7) _cell_length_c 5.6253(10) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 473.4(5) _cell_formula_units_Z 4 _cell_measurement_temperature 295(2) _cell_measurement_pressure 1150000 _cell_measurement_reflns_used 1649 _cell_measurement_theta_min 3.61 _cell_measurement_theta_max 27.47 _exptl_crystal_description prism _exptl_crystal_colour colourless _exptl_crystal_size_max 0.35 _exptl_crystal_size_mid 0.23 _exptl_crystal_size_min 0.22 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.872 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 264 _exptl_absorpt_coefficient_mu 1.740 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.234 _exptl_absorpt_correction_T_max 0.661 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 1.15(5) GPa (1150000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 1150000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 2077 _diffrn_reflns_av_R_equivalents 0.1022 _diffrn_reflns_av_sigmaI/netI 0.0413 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -4 _diffrn_reflns_limit_k_max 4 _diffrn_reflns_limit_l_min -6 _diffrn_reflns_limit_l_max 6 _diffrn_reflns_theta_min 4.06 _diffrn_reflns_theta_max 25.09 _reflns_number_total 208 _reflns_number_gt 198 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction Ltd, 2009)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction Ltd, 2009)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction Ltd, 2009); REDSHABS (Katrusiak, A., 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 2008)' _computing_molecular_graphics 'Mercury (Macrae at al., 2008)' _computing_publication_material 'SHELXL--97 (Sheldrick, 2008)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0712P)^2^+1.0664P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.060(18) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 208 _refine_ls_number_parameters 34 _refine_ls_number_restraints 17 _refine_ls_R_factor_all 0.0516 _refine_ls_R_factor_gt 0.0475 _refine_ls_wR_factor_ref 0.1386 _refine_ls_wR_factor_gt 0.1314 _refine_ls_goodness_of_fit_ref 1.223 _refine_ls_restrained_S_all 1.181 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.65165(14) 0.0596(5) 0.1910(3) 0.0453(19) Uani 1 1 d . . . Cl2 Cl 0.6162(2) 0.2500 0.6269(4) 0.045(2) Uani 1 2 d S . . C1 C 0.5834(7) 0.2500 0.3181(14) 0.035(4) Uani 1 2 d SU . . C2 C 0.4480(8) 0.2500 0.2753(16) 0.037(4) Uani 1 2 d SDU . . H1 H 0.436(7) 0.2500 0.107(3) 0.055 Uiso 1 2 d SD . . H2 H 0.415(4) 0.1464(14) 0.347(6) 0.055 Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0451(16) 0.047(6) 0.0434(12) -0.0096(13) 0.0021(6) 0.0090(11) Cl2 0.064(2) 0.046(7) 0.0263(12) 0.000 -0.0040(9) 0.000 C1 0.030(4) 0.046(11) 0.030(4) 0.000 0.003(3) 0.000 C2 0.036(5) 0.028(11) 0.047(4) 0.000 -0.006(4) 0.000 # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1 1.781(6) . ? Cl2 C1 1.775(8) . ? C1 C2 1.521(12) . ? C2 H1 0.96(2) . ? C2 H2 0.96(1) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 Cl2 110.9(6) . . ? C2 C1 Cl1 110.9(4) . . ? Cl2 C1 Cl1 107.8(3) . . ? Cl1 C1 Cl1 108.4(5) 7_565 . ? C1 C2 H1 107(5) . . ? C1 C2 H2 108(3) . . ? H1 C2 H2 111(2) . . ? _diffrn_measured_fraction_theta_max 0.459 _diffrn_reflns_theta_full 25.09 _diffrn_measured_fraction_theta_full 0.459 _refine_diff_density_max 0.378 _refine_diff_density_min -0.317 _refine_diff_density_rms 0.092 ############################################################################# data_111TCE_2.15GPa _database_code_depnum_ccdc_archive 'CCDC 784826' #TrackingRef '- 111TCE.cif' # CHEMICAL DATA _audit_creation_method SHELXL-97 _chemical_name_systematic ; 1,1,1-trichloroethane ; _chemical_name_common 1,1,1-trichloroethane _chemical_melting_point 242.8 _chemical_formula_moiety 'C2 H3 Cl3' _chemical_formula_sum 'C2 H3 Cl3' _chemical_formula_weight 133.39 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Cl Cl 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' # CRYSTAL DATA _symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P n m a' _symmetry_space_group_name_Hall '-P 2ac 2n' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x+1/2, -y, z+1/2' '-x, y+1/2, -z' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x-1/2, y, -z-1/2' 'x, -y-1/2, z' '-x-1/2, y-1/2, z-1/2' _cell_length_a 10.914(2) _cell_length_b 7.414(6) _cell_length_c 5.5350(10) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 447.9(4) _cell_formula_units_Z 4 _cell_measurement_temperature 295(2) _cell_measurement_pressure 2150000 _cell_measurement_reflns_used 1734 _cell_measurement_theta_min 3.68 _cell_measurement_theta_max 28.02 _exptl_crystal_description prism _exptl_crystal_colour colourless _exptl_crystal_size_max 0.35 _exptl_crystal_size_mid 0.24 _exptl_crystal_size_min 0.22 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.978 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 264 _exptl_absorpt_coefficient_mu 1.839 _exptl_absorpt_correction_type numerical _exptl_absorpt_correction_T_min 0.237 _exptl_absorpt_correction_T_max 0.645 _exptl_absorpt_process_details ; Correction for absorption of the diamond-anvil cell and the sample were made using program REDSHABS (Katrusiak, A. (2003) REDSHABS. Adam Mickiewicz University Pozna\'n; Katrusiak, A. (2004) Z. Kristallogr. 219, 461-467). ; # EXPERIMENTAL DATA _exptl_special_details ; Data were collected at room temperature and pressure of 2.15(5) GPa (2150000 kPa) with the crystal obtained by the in-situ high-pressure crystallization technique. Pressure was determined by monitoring the shift of the ruby R1-fluorescence line. ; _diffrn_ambient_temperature 295(2) _diffrn_ambient_environment 'diamond-anvil cell' _diffrn_ambient_pressure 2150000 _diffrn_radiation_wavelength 0.71073 _diffrn_radiation_type MoK\a _diffrn_radiation_source 'fine-focus sealed tube' _diffrn_radiation_monochromator graphite _diffrn_measurement_device_type 'KM-4 CCD' _diffrn_measurement_method '\f- and \w-scans' _diffrn_detector_area_resol_mean ? _diffrn_standards_number 0 _diffrn_standards_interval_count 0 _diffrn_standards_interval_time ? _diffrn_standards_decay_% 0 _diffrn_reflns_number 1996 _diffrn_reflns_av_R_equivalents 0.0993 _diffrn_reflns_av_sigmaI/netI 0.0363 _diffrn_reflns_limit_h_min -12 _diffrn_reflns_limit_h_max 12 _diffrn_reflns_limit_k_min -4 _diffrn_reflns_limit_k_max 4 _diffrn_reflns_limit_l_min -6 _diffrn_reflns_limit_l_max 6 _diffrn_reflns_theta_min 4.13 _diffrn_reflns_theta_max 25.09 _reflns_number_total 199 _reflns_number_gt 193 _reflns_threshold_expression I>2\s(I) _computing_data_collection 'CrysAlisCCD (Oxford Diffraction Ltd, 2009)' _computing_cell_refinement 'CrysAlisRED (Oxford Diffraction Ltd, 2009)' _computing_data_reduction 'CrysAlisRED (Oxford Diffraction Ltd, 2009); REDSHABS (Katrusiak, A., 2003)' _computing_structure_solution 'SHELXS--97 (Sheldrick, 2008)' _computing_structure_refinement 'SHELXL--97 (Sheldrick, 2008)' _computing_molecular_graphics 'Mercury (Macrae at al., 2008)' _computing_publication_material 'SHELXL--97 (Sheldrick, 2008)' # REFINEMENT DATA _refine_special_details ; Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The DAC imposes severe restrictions on which reflections can be collected, resulting in a low data:parameter ratio. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0650P)^2^+1.6750P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment mixed _refine_ls_extinction_method SHELXL _refine_ls_extinction_coef 0.002(7) _refine_ls_extinction_expression Fc^*^=kFc[1+0.001xFc^2^\l^3^/sin(2\q)]^-1/4^ _refine_ls_number_reflns 199 _refine_ls_number_parameters 34 _refine_ls_number_restraints 17 _refine_ls_R_factor_all 0.0595 _refine_ls_R_factor_gt 0.0576 _refine_ls_wR_factor_ref 0.1248 _refine_ls_wR_factor_gt 0.1222 _refine_ls_goodness_of_fit_ref 1.136 _refine_ls_restrained_S_all 1.087 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 # ATOMIC COORDINATES AND DISPLACEMENT PARAMETERS loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Cl1 Cl 0.65125(14) 0.0557(5) 0.1910(2) 0.0331(16) Uani 1 1 d . . . Cl2 Cl 0.6150(2) 0.2500 0.6347(3) 0.0354(19) Uani 1 2 d S . . C1 C 0.5833(7) 0.2500 0.3196(13) 0.024(3) Uani 1 2 d SU . . C2 C 0.4460(8) 0.2500 0.2782(16) 0.030(4) Uani 1 2 d SDU . . H1 H 0.437(7) 0.2500 0.106(3) 0.044 Uiso 1 2 d SD . . H2 H 0.410(4) 0.1441(14) 0.346(6) 0.044 Uiso 1 1 d D . . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Cl1 0.0348(14) 0.032(5) 0.0325(10) -0.0076(12) 0.0015(6) 0.0073(9) Cl2 0.0489(18) 0.039(6) 0.0188(11) 0.000 -0.0037(9) 0.000 C1 0.018(4) 0.030(11) 0.023(3) 0.000 0.002(3) 0.000 C2 0.025(5) 0.028(11) 0.036(4) 0.000 -0.006(3) 0.000 # MOLECULAR GEOMETRY _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Cl1 C1 1.769(5) . ? Cl2 C1 1.778(7) . ? C1 C2 1.517(11) . ? C2 H1 0.96(2) . ? C2 H2 0.96(1) . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag C2 C1 Cl1 110.7(4) . . ? Cl1 C1 Cl1 109.0(4) 7_565 . ? C2 C1 Cl2 109.9(6) . . ? Cl1 C1 Cl2 108.2(3) . . ? C1 C2 H1 105(5) . . ? C1 C2 H2 111(3) . . ? H1 C2 H2 110(2) . . ? _diffrn_measured_fraction_theta_max 0.462 _diffrn_reflns_theta_full 25.09 _diffrn_measured_fraction_theta_full 0.462 _refine_diff_density_max 0.375 _refine_diff_density_min -0.381 _refine_diff_density_rms 0.093 #############################################################################