Supporting Information

Polymorphic and Morphological Selection of CaCO₃ by Magnesium-Assisted Mineralization in Gelatin: Magnesium-Rich Spheres Consisting of Centrally Aligned Calcite Nanorods and Their Good Mechanical Properties

Junwu Xiao, and Shihe Yang*

Department of Chemistry, William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

E-mail: chsyang@ust.hk
Calculating the percentages of aragonite and magnesium calcites: The percentages of aragonite (A) and magnesium calcite (MC) in the samples of G₃Mg₅₀ and G₅Mg₅₀ are determined by the Reference Intensity Rations (RIR) method, and calculated by the following equations:

\[
W_A = \frac{I_A}{I_A + \frac{I_{MC}}{K_{MC}^A}} \quad W_{MC} = \frac{I_{MC}}{I_{MC} + \frac{I_A}{K_{MC}^A}} = 1 - W_A
\]

\[
K_{MC}^A = \frac{K_{MC}^{Al_2O_3}}{K_{Al_2O_3}^A} = 2.00 \quad K_{MC}^A = \frac{K_{Al_2O_3}^A}{K_{Al_2O_3}^{MC}} = 0.50
\]

\(W_A\) and \(W_{MC}\) are the percentages of aragonite and magnesium calcite phases in the samples, respectively. \(I_A\) and \(I_{MC}\) are the intensity of (111) of aragonite and (104) of magnesium calcite phases in the XRD pattern, respectively. \(K_{Al_2O_3}^A\) and \(K_{Al_2O_3}^{MC}\) are the K values of aragonite and magnesium calcite phases relative to Al₂O₃ crystals, respectively.
Fig. SI-1. The high magnification SEM image of CaCO$_3$·H$_2$O in the sample of G$_1$Mg$_{50}$. Together with Fig. 2B, it shows that the CaCO$_3$·H$_2$O particles in the sample of G$_1$Mg$_{50}$ are in spindle shape.
Fig. SI-2. Raman spectrum of hemispherical shaped microparticles of G₃Mg₅₀ (Lattice mode of aragonite: 151, 206 and 275 cm⁻¹; \(\nu_4\) in-plane bending of aragonite: 705 cm⁻¹; \(\nu_1\) symmetric stretching of aragonite: 1085 cm⁻¹). [1] The Raman spectrum reveals that the hemispherical shaped microparticles are in aragonite phase.
Fig. SI-3. Raman spectrum of microspheres of G₅Mg₅₀ (Lattice mode of magnesium calcite: 287 cm⁻¹; ν₄ in-plane bending of magnesium calcite: 712 cm⁻¹; ν₁ symmetric stretching of magnesium calcite: 1090 cm⁻¹; ν₃ asymmetric stretching of magnesium calcite: 1437 cm⁻¹; overtone (ν₂ out of plane bending × 2) of magnesium calcite: 1750 cm⁻¹).[1] The Raman spectrum reveals that the microspheres of G₅Mg₅₀ are in magnesium calcite phase.
Fig. SI-4. SEM image showing the surface of hemispherical shaped aragonite microparticles of G₃Mg₅₀. Together with Fig. 2C and D, it shows that aragonite hemispheres are assembled by random aggregation of ~30 nm nanoparticles.
Fig. SI-5. SEM image of the surface of high magnesium calcite microspheres (HMCMs) in the sample of G₅Mg₅₀. Together with Fig. 2E and F, it shows that G₅Mg₅₀ HMCMs are composed of the centrally aligned nanorods.
Fig. SI-6. SEM image showing the surface of low magnesium calcite microspheres (LMCMs) in the sample of G$_5$Mg$_{20}$. Together with Fig. 3A and B, it reveals that G$_5$Mg$_{20}$ LMCMs are assembled from worm-like nanoparticles ~15 nm in diameter and ~100 nm in length in a way similar to wing wool into a ball.
Fig. SI-7. TGA curves of G_1Mg_{50}, G_3Mg_{50}, G_5Mg_{50}, G_5Mg_{20} and G_5Mg_0. Several features can be recognized from the TGA curves. First, free and bound water molecules were fully lost at $< 200 \, ^oC$. Second, gelatin matrix was decomposed in the temperature range between 200 and 350 oC, and the organic residues were continually burned between 350 and 600 oC. Third, the CaCO$_3$ crystals began to decompose at $> 600 \, ^oC$. As for calculating the percentages of the different components in the samples, the percentages of inorganic component are calculated from the transition around 600 oC. The percentages of water are calculated before the first transition. The rests are the percentages of gelatin matrix.