Supporting Information

Exceptions to the rule: new hydrogen bonded networks from an old reliable

Onome Ugono, Nigam P. Rath, Alicia M. Beatty*

Center for Nanoscience
University of Missouri-St Louis
One University Boulevard
St Louis, Missouri, USA 63121
Tel: +1 314 516 4383
Email: beattya@umsl.edu
General Information

All reagents were obtained from Aldrich (Milwaukee, WI) or Alfa Aesar (Ward Hill, MA) and used without further purification unless otherwise stated. Single crystal X-ray diffraction data was obtained on an APEX II or a SMART APEX II diffractometer at 100 K unless otherwise stated. Powder x-ray diffraction (PXRD) was obtained on a Rigaku Ultima-IV diffractometer under ambient conditions. Melting points were determined on a Thermo-Scientific Mel-Temp apparatus, while Infra-red spectra were collected using a Thermo Nicolet Avatar 380 FT-IR.

Note: PXRD data is not reported for hexane-1,6-diammonium•(HPzDCA)₂, compound 7, as sufficient quantities of a pure phase could not be obtained.

Compound 1: o-ethoxyanilinium•HPzDCA

A 20 ml scintillation vial was charged with 70.0 mg (0.40 mmol) of pyrazole-3,5-dicarboxylic acid monohydrate, which was dissolved in 5.0 ml of a 3:2 EtOH-H₂O mixture. To this solution was then added 54.9 mg (52.2 µl, 0.40 mmol) of o-ethoxyaniline. The mixture was filtered and the filtrate was allowed to slowly evaporate to yield colorless single crystals of o-ethoxyanilinium•HPzDCA (65.0 mg, 56% yield), mp 218-220 °C.

Compound 2: o-ethylanilinium•HPzDCA•H₂O

A 20 ml scintillation vial was charged with 70.0 mg (0.40 mmol) of pyrazole-3,5-dicarboxylic acid monohydrate, which was dissolved in 5.0 ml of MeOH. To this solution was then added 48.5 mg (49.3 µl, 0.40 mmol) of o-ethylaniline. The mixture was filtered and the filtrate was allowed to slowly evaporate to yield colorless single crystals of o-ethylanilinium•HPzDCA•H₂O (36.8 mg, 33 % yield), mp 207-209 °C.

Compound 3: 2,6-diethylanilinium•HPzDCA•H₂O

A 20 ml scintillation vial was charged with 70.0 mg (0.40 mmol) of pyrazole-3,5-dicarboxylic acid monohydrate, which was dissolved in 5.0 ml of a 3:2 MeOH-H₂O mixture. To this solution was then added 59.7 mg (66.0 µl, 0.40 mmol) of 2,6-diethylaniline. The mixture was filtered and the filtrate was allowed to slowly evaporate to yield colorless single crystals of 2,6-diethylanilinium•HPzDCA•H₂O (73.5 mg, 60 % yield), mp 253-255 °C.

Compound 4: 2-Isopropylanilinium•HPzDCA

A 20 ml scintillation vial was charged with 70.0 mg (0.40 mmol) of pyrazole-3,5-dicarboxylic acid monohydrate, which was dissolved in 5.0 ml of a MeOH. To this solution was then added 54.1 mg
(56 µl, 0.40 mmol) of 2-isopropylaniline. The mixture was filtered and the filtrate was allowed to slowly evaporate to yield colorless single crystals of 2-Isopropylanilinium•HPzDCA (56.3 mg, 47 % yield), mp 173-175 °C.

Compound 5: 1,4-bis(2-hydroxyethyl)piperazinium•(HPzDCA)$_2$

A 20 ml scintillation vial was charged with 70.0 mg (0.40 mmol) of pyrazole-3,5-dicarboxylic acid monohydrate, which was dissolved in 5.0 ml of a 4:1 MeOH-H$_2$O mixture. To this solution was then added 70.0 mg (0.40 mmol) of 1,4-bis(2-hydroxyethanol)piperazine. The mixture was filtered and the filtrate was allowed to slowly evaporate to yield colorless single crystals of 1,4-bis(2-hydroxyethyl)piperazinium•HPzDCA (96.7 mg, 73 % yield), mp 250-252 °C.

Compound 6: TMEDAH$_2$•(HPzDCA)$_2$

A 20 ml scintillation vial was charged with 70.0 mg (0.40 mmol) of pyrazole-3,5-dicarboxylic acid monohydrate, which was dissolved in 5.0 ml of MeOH. To this solution was then added 46.5 mg (60.0 µl, 0.40 mmol) of N,N,N',N'-tetramethylethylenediamine (TMEDA). The mixture was filtered and the filtrate was allowed to slowly evaporate to yield colorless single crystals of TMEDAH$_2$•HPzDCA (74.1 mg, 68 % yield), mp 284-286 °C.

Compound 7: Hexane-1,6-diammonium•(HPzDCA)$_2$

A 20 ml scintillation vial was charged with 70.0 mg (0.40 mmol) of pyrazole-3,5-dicarboxylic acid monohydrate, which was dissolved in 5.0 ml of a 3:2 MeOH-H$_2$O mixture. To this solution was then added 46.5 mg (52.2 µl, 0.40 mmol) of 1,6-diaminohexane. The mixture was filtered and the filtrate was allowed to slowly evaporate to yield colorless single crystals of hexane-1,6-diammonium•(HPzDCA)$_2$ (8.74 mg, 8 % yield), mp 134-136 °C.
Figure S1. Infra-Red spectrum of o-ethoxyanilinium•HPzDCA

Figure S2. Infra-Red spectrum of o-ethylanilinium•HPzDCA•H$_2$O
Figure S3. Infra-Red spectrum of 2,6-diethylanilinium•HPzDCA•H2O

Figure S4. Infra-Red spectrum of 2-isopropylanilinium•HPzDCA
Figure S5. Infra-Red spectrum of 1,4-bis(2-hydroxyethylpiperazinium)•(HPzDCA)₂

Figure S6. Infra-Red spectrum of TMEDAH₂•(HPzDCA)₂
Figure S7. Infra-Red spectrum of hexane-1,6-diaminonium•(HPzDCA)$_2$

Figure S8. PXRD of o-ethoxyanilinium•HPzDCA
Figure S9. PXRD of o-ethylanilinium•HPzDCA•H$_2$O

Figure S10. PXRD of 2,6-diethylanilinium•HPzDCA•H$_2$O
Figure S11. PXRD of 2-isopropylanilinium•HPzDCA

Figure S12. PXRD of 1,4-bis(2-hydroxyethyl)piperazinium•(HPzDCA)$_2$
Figure S13. PXRD of TMEDA₂•(HPzDCA)₂

Figure S14. Structural features of: a) hydrogen bonded network of hexane-1,6-diaminonium•(HPzDCA)₂ (compound 7); b) Overlay of layers of 7 showing the occupation of intralayer voids by adjacent layers. (Hydrogen bonds within the “green” layer are colored grey, while those in the “yellow” layer are colored red.)

Table S1. Summary of Crystallographic Data for Compound 7.
Empirical formula \(\text{C}_{16} \text{H}_{24} \text{N}_{6} \text{O}_{8} \)

Formula weight 428.41

Temperature 100(2) K

Wavelength 0.71073 Å

Crystal system Triclinic

Space group P-1

Unit cell dimensions
\[
a = 4.5537(6) \text{ Å} = 79.342(4)^\circ.
\]
\[
b = 9.3845(11) \text{ Å} = 85.338(5)^\circ.
\]
\[
c = 11.1398(14) \text{ Å} = 85.904(4)^\circ.
\]

Volume 465.52(10) Å\(^3\)

Z 1

Density (calculated) 1.528 Mg/m\(^3\)

Absorption coefficient 0.124 mm\(^{-1}\)

\(F(000)\) 226

Crystal size 0.23 x 0.20 x 0.14 mm\(^3\)

Theta range for data collection 1.86 to 29.74\(^\circ\).

Index ranges
\(-6 \leq h \leq 6, -13 \leq k \leq 13, -15 \leq l \leq 15\)

Reflections collected 12441

Independent reflections 2637 [R(int) = 0.0318]

Completeness to theta = 25.00\(^\circ\) 99.8 \%

Absorption correction Semi-empirical from equivalents

Max. and min. transmission 0.9827 and 0.9725

Refinement method Full-matrix least-squares on \(F^2\)

Data / restraints / parameters 2637 / 0 / 138

Goodness-of-fit on \(F^2\) 1.061

Final R indices [I>2sigma(I)] \(R1 = 0.0364, wR2 = 0.0935\)

R indices (all data) \(R1 = 0.0446, wR2 = 0.0980\)

Largest diff. peak and hole 0.433 and -0.280 e.Å\(^{-3}\)