Re-crystallization of Silver Nanoparticles in Highly Concentrated NaCl Environment – a New Substrate for Surface Enhanced IR-visible Raman Spectroscopy

Robert Prucek,*a Aleš Panáček,*a Ariana Fargašová,a Václav Ranc,b Vlastimil Mašek,c Libor Kvítek*a and Radek Zbořil*a

a Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic

b Department of Analytical Chemistry, Faculty of Science, Palacky University, 17 Listopadu 12, Olomouc 771 46, Czech Republic

c Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hněvitinská 3, Olomouc 775 15, Czech Republic
Figure S1. The absorption spectra of the stock solution of Ag NPs (diluted 10 times) and the dependence of the average size of Ag NPs (inset) collected for 574 days since their preparation. Small differences of the individual spectra are given by an experimental error, as before measuring the absorption spectra the stock solution of Ag NPs had to be 10 times diluted by deionised water.
Figure S2. XRD pattern of large silver particles formed after 15 minutes since the addition of NaCl solution (final concentration 400 mM).
Figure S3. The representative absorption spectra registered for 20 minutes since the addition of the NaCl solution (final concentration 400 mM) at different reaction temperatures.
Figure S4. TEM images of silver particles formed at 60° C by gradual crystallization after 20 seconds (A) and 2 minutes (B) since the addition of the NaCl solution.
Figure S5. The representative absorption spectra collected 20 minutes since the addition of the solution of NaBr (A), and (B) NaI (B). The final concentration of Br$^-$ and I$^-$ was 400 mM.
Figure S6. The selected area electron diffraction patterns of AgBr particles (A) and AgI particles (B) as found in TEM images after the additions of NaBr and NaI solutions, respectively.