Shape and Size Controlled Synthesis and Properties of Colloidal IV-VI SnSe Nanocrystals

Jiajia Ning, †‡ Guanjun Xiao, † Tao Jiang, † Li Wang, ‡ Quanqin Dai, † Bo Zou, †,*

Bingbing Liu, † Yingjin Wei, †§ Gang Chen, †§ and Guangtian Zou †

State Key Laboratory of Superhard Materials and College of Materials Science & Engineering, Jilin University, Changchun 130012, P. R. China

* Corresponding authors. E-mails: zoubo@jlu.edu.cn

† State Key Laboratory of Superhard Materials, Jilin University.

‡ College of Materials Science & Engineering, Jilin University.

§ College of Physics, Jilin University.
Figure S1. XRD patterns of SnSe nanocrystals with different size. The diffraction peaks become more wide and weak with decreasing the size of SnSe nanocrystals.

Figure S2. Selected area electron diffraction (SAED) of as-prepared SnSe nanocrystals.
Table 1. Size of SnSe nanocrystals synthesized with different experimental parameter.

<table>
<thead>
<tr>
<th></th>
<th>110 度</th>
<th>140 度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:2</td>
<td>19.5 nm</td>
<td>16.6 nm</td>
</tr>
<tr>
<td>1:1</td>
<td>7.2 nm</td>
<td>8.4 nm</td>
</tr>
<tr>
<td>2:1</td>
<td>24 nm</td>
<td>18 nm</td>
</tr>
</tbody>
</table>

Figure S3. Cycle behavior of SnSe nanocrystals with different size as anode material for lithium ion batteries.