Solution-Based Synthesis of SnO$_2$ Nanoparticle/CdS nanowire Heterostructure

Shancheng Yan1,2, Dong Hu1, Feihu Hu2, Jiansheng Wu1, Ningping Huang2, Zhongdang Xiao2*

1. School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046, P. R. China

2. State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science & Medical Engineering, Southeast University, Si Pai Lou 2#, Nanjing 210096, P. R. China

Figure S1 shows the image of pure CdS nanowire

Figure S2 shows the XRD pattern of SnO$_2$ Nanoparticle/CdS nanowire.
Figure S3a shows the EDXA analysis of SnO$_2$ Nanoparticle/CdS nanowire. In the EDXA spectrum, the peaks of Cd, S, Sn, and O are pronounced and no other peaks are found except for those of Cu and C originating from the Cu micro-grid with amorphous carbon used to support the SnO$_2$ Nanoparticle/CdS nanowire. The molar ratio of oxygen and tin was close to 2, calculated by EDXA software, indicated that the nanoparticle was SnO$_2$. In order to further confirm the element of the product, the
corresponding EDX line scanning of single SnO$_2$ Nanoparticle/CdS nanowire was shown in the Figure S3b. It is noticeable that the ratio of O and Sn is about 2, with a uniform distribution of the elements along the cross-section in the Figure S3b. The SAED pattern of SnO$_2$ NP/CdS NW heterostructure is shown in the Figure S3c. From the SAED pattern, there are the crystal SnO$_2$ spots in the pattern, which is different from the pattern of single crystal CdS.

Figure S4 In contrast with SnO$_2$ NP/ CdS NW heterojunction reaction, a separate experiment (0.0075 g SnCl$_4$. 5H$_2$O were dissolved in 40 ml anhydrous ethanol. The resulting mixture was loaded into a 50 ml-Telfon-lined autoclave. The autoclave was sealed and maintained at 200°C for 24 h. The autoclave was cooled to room temperature naturally.) was carried out for SnO$_2$ materials. The products are purely SnO$_2$ microparticles (Figure S4). The typical FESEM image is illustrated in Figure S4.
Figure S5 The product was firstly fabricated by the chemical solution method. 0.0030 g as-prepared CdS and 0.0075 g SnCl$_4$·5H$_2$O were dissolved in 40 ml anhydrous ethanol. The resulting mixture was loaded into a 50 ml-Teflon-lined autoclave. The autoclave was sealed and maintained at 200°C for 24 h. The autoclave was cooled to room temperature naturally. Subsequently, the 0.0075 g SnCl$_4$·5H$_2$O was added into above autoclave again. (a) The autoclave was sealed again and maintained at 200°C for 24 h (total 48h). (b) The autoclave was cooled to room temperature naturally; the autoclave was sealed again and maintained at 200°C for 48 h (total 72h). According to Figure S5a, it was found that the product was SnO$_2$ NP/CdS NW heterostructures when the autoclave was sealed again and maintained at 200°C for 24h (total 48h). To further extend the reaction time, like 48h, an interesting phenomenon appeared. Figure S5b shows there are few SnO$_2$ nanoparticles on the surface of CdS nanowires when the autoclave was sealed again and maintained at 200°C for 48h (total 72h) though the amount of the SnCl$_4$·5H$_2$O was twice than previous experiment.