Superior gas-sensing and lithium-storage performances of SnO$_2$ nanocrystals synthesized by hydrothermal method

Jianmin Ma, Jun Zhang, Shurong Wang, Qinghong Wang, Lifang Jiao, Jiaqin Yang, Xiaochuan Duan, Zhifang Liu, Jiabiao Lian and Wenjun Zheng*

Department of Materials Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China

Corresponding Author: Prof. Wenjun Zheng
Address: Department of Materials Chemistry, College of Chemistry, Nankai University, Tianjin, P. R. China
Phone: +86-22-23507951
Fax: +86-22-23502604
E-mail: zhwj@nankai.edu.cn
Fig. S1 Size distribution of the as-synthesized SnO₂ nanocrystals.

Fig. S2 TEM image of the as-synthesized SnO₂ nanocrystals without using acetic acid.
Fig. S3 TEM images of the SnO$_2$ nanocrystals in the presence of different amount of acetic acid: (a) 0.6 mL and (b) 6 mL.

Fig. S4 Dynamic response–recovery curves of the sensors of SnO$_2$ with different sizes to different ethanol concentrations at 220 °C.
Fig. S5 Sensor response to different ethanol concentrations at 220 °C.

Fig. S6 Sensor response to different gases at 220 °C.
Fig. S7 The initial charge and discharge curve of the as-synthesized SnO$_2$ nanocrystals electrode.

Fig. S8 Coulombic efficiency vs. cycle number for the as-synthesized SnO$_2$ nanocrystals electrode.
Fig. S9 Variation of Li intercalation-deintercalation capacity vs. cycle number for the SnO₂ nanoparticles with size of 20-110 nm.