Halogen Dipole Moment Effect of Phenolic Ring on Formation of Stair Like Polymers or Polymers with Tetranuclear Cubic Cage Units; New Precursors for Preparation of TlCl and Tl₂O₃ Nanostructures

Kamran Akhbari, Ali Morsali*

Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-4838, Tehran, Islamic Republic of Iran Tel. and Fax: +98 21 82884416. *E-mail address:* Morsali_a@modares.ac.ir (A. Morsali)

$[Tl_4(\mu_3-2,4-dcp)_4]$ (1)		$[Tl_4(\mu_3-3,4-dcp)_4]$ (2)		$[Tl(\mu_3-2,5-dcp)]$ (3)	
T11-T11	3.845	Tl1-C11	3.586	Tl1-C1	3.550
Tl1-Tl1	3.845	Tl1-Tl2	3.864	Tl1-C2	3.624
		T12-T11	3.970	T11-T11	3.888
$[Tl(\mu_3-2,4,6-tcp)]$ (4)		_		T11-T11	3.888
Tl1-O1	2.828	$[Tl_4(\mu_3-2,4-bcp)_4]$ (5)		T11-T11	3.888
Tl1-Tl1	3.815	Tl1-Tl1	3.872	Tl1-H2	3.063
Tl1-Tl1	3.815	Tl1-Tl1	3.872	Tl1-Cl1	3.661
Tl1-Tl1	3.810			Tl1-Cl1	3.588
Tl1-Cl1	3.632	$[Tl_4(\mu_3-4-cp)_4]$ (7)		Tl1-Cl2	3.572
Tl1-Cl1	3.343	Tl1-C2	3.639	_	
Tl1-Cl3	3.544	Tl1-C5	3.654	[Tl ₄ (µ ₃ -4-ip) ₄] (8)	
		Tl1-Tl1	3.986	Tl1-C4	3.609
$[Tl_4(\mu_3-2,4-cfp)_4]$ (6)			3.986	Tl2-C8	3.655
Tl1-C7	3.657	Tl1-Cl1	3.619	Tl4-C10	3.670
Tl1-C8	3.602			Tl4-C11	3.791
Tl1-C9	3.546	[Tl(µ ₃ -4-fp)] (9)		Tl4-C12	3.710
Tl1-C10	3.464	Tl1-C1	3.858	Tl4-C15	3.509
Tl1-C11	3.516	Tl1-C2	3.834	Tl4-C22	3.613
Tl1-C12	3.606	Tl1-C3	3.561	Tl4-C25	3.530
Tl4-C3	3.599	Tl1-C4	3.344	T11-T12	3.883
Tl4-C4	3.481	Tl1-C5	3.415	T11-T13	3.884
Tl1-Tl3	3.801	Tl1-C6	3.668	T12-T14	3.878
Tl1-Tl1	3.861			T13-T14	3.916
Tl2-Tl4	3.838			T12-I6	3.816
Tl4-H21	3.113			T13-I7	3.663
Tl2-Cl3	3.709			T13-I8	3.877
Tl2-F1	3.268			T14-I7	3.801

Table S1. Bond lengths /Å of secondary Tl…Tl, Tl…C, Tl…H, Tl…F, Tl…Cl and Tl…I interactions in compounds **1-9**.

Figure S1. View of the two types of primary structural units; a-e) distorted tetranuclear cubic cage unit in compounds 1, 5, 6, 7 and 8 and f) dimeric unit in compound 4 (Tl = purple, O = red, C = gray, F = orange, Cl = green, Br = yellow, I = dark purple and H = white).

Figure S2. A fragment of three-dimensional supramolecular network in $[Tl_4(\mu_3-2,4-dcp)_4]$ (1) constructed from Cl····Cl interactions (Tl = purple, O = red, C = gray, Cl = green and H = white).

Figure S3. a) A fragment of one-dimensional supramolecular polymer of $[Tl_4(\mu_3-3, 4-dcp)_4]$ (2) along the crystallographic *a* axis, constructed from short Tl···C contacts, b) the role of Cl···Cl interactions in formation of two-dimensional supramolecular polymer of 2 along the crystallographic *c* axis and c) side view of two-dimensional supramolecular polymer of 2 constructed from secondary Tl···C and Cl···Cl interactions along the crystallographic *a* axis (Tl = purple, O = red, C = gray, Cl = green and H = white).

Figure S4. A fragment of three-dimensional supramolecular network in $[Tl_4(\mu_3-2, 4-bcp)_4]$ (5) constructed from Cl···Br interactions (Tl = purple, O = red, C = gray, Cl = green, Br = yellow and H = white).

Figure S5. a) A fragment of one-dimensional supramolecular polymer in $[Tl_4(\mu_3-2, 4-cfp)_4]$ (6) constructed from inter-cage TI···Tl interaction, b) representation of secondary η^6 -TI···C and η^2 -TI···C interactions in 6, c) the role of agostic interaction in formation of one-dimensional supramolecular polymer in 6, d) a fragment of two-dimensional supramolecular polymer in 6, d) a fragment of two-dimensional supramolecular polymer in 6, d) a fragment of two-dimensional supramolecular polymer in 6, constructed from agostic TI···H and inter-cage thallophillic interactions, e) The role of Tl2···Cl3 short contact in connection of two tetranuclear cubic cage units to each other, f) A fragment of one-dimensional supramolecular polymer in 6 constructed from short Tl2···F1 contact along the crystallographic *c* axis (Tl = purple, O = red, C = gray, F = orange, Cl = green and H = white).

Figure S6. Represents the role of short Tl···I contacts in formation of three-dimensional supramolecular network in **8** (Tl = purple, O = red, C = gray, I = dark purple and H = white).

Figure S7. Representation of secondary intra-chain a) TI···TI, b) TI···C and c) TI···H interactions in $[TI(\mu_3-2,5-dcp)]$ (3) (TI = purple, O = red, C = gray, CI = green and H = white).

Figure S8. a) Intra-chain thallophillic interactions between the Tl(I) and three other thallium atoms in $[Tl(\mu_3-2,4,6-tcp)]$ (4) and b) the role of three inter-chain Tl···Cl and one inter-chain Cl···Cl interactions in connection of one-dimensional coordination polymers in 4, resulting in a two-dimensional supramolecular network (Tl = purple, O = red, C = gray, Cl = green and H = white).

13

14

Figure S9. Thermal behavior of compounds a) 1, b) 3, c) 5, d) 6, e) 7, f) 8 and g) 9.

Figure S10. IR spectra of the residues obtained after calcination process of compounds **3** at 600 °C (a) and **9** at 400 °C (b) which attributed to TlCl and Tl₂O₃, respectively.

Figure S11. XRD pattern of the residue obtained after calcination process of compounds 3 (a) and 9 (b) at 600 and 400 °C, respectively.