Crystalline beryllium carboxylate frameworks with rutile-type and cubic-C$_3$N$_4$ topologies

Maoping Kang,a Daibing Luo,b Xiuchao Luo,a Ziyi Chena and Zhien Lina*

a College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.

b Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China

* To whom correspondence should be addressed. E-mail: zhienlin@scu.edu.cn
Physical measurements:

The thermogravimetric analyses were performed on a Mettler Toledo TGA/SDTA 851e analyzer in a flow of N₂ with a heating rate of 10 °C/min from 30 to 700 °C. Powder X-ray diffraction (XRD) data were obtained using a Rigaku D/MAX-rA diffractometer with Cu-Kα radiation (λ = 1.5418 Å) in the 2θ range of 5-50°. The tube voltage and current were 40 kV and 35 mA, respectively. The step size was 0.02° and the count time was 4 s. The CHN analyses were carried out on a Euro EA3000 analyzer. IR spectra (KBr pellets) were recorded on an ABB Bomen MB 102 spectrometer.
Figure captions:

Fig. S1. ORTEP plot of the asymmetric unit of BCF-1, showing the labeling scheme and the 30% probability displacement ellipsoid. Symmetry code: A = -y+1/2,x-1/2,-z+1/2.

Fig. S2. ORTEP plot of the asymmetric unit of BCF-2, showing the labeling scheme and the 30% probability displacement ellipsoid. Symmetry code: A = -x+2,-y+3/2,z+0; B = y+1/4,-x+7/4,-z+5/4; C = -y+7/4,x-1/4,-z+5/4.

Fig. S3. Coordination modes of the BTC ligands in BCF-1 and BCF-2.

Fig. S4. IR spectrum of BCF-2.

Fig. S5. Experimental and simulated powder XRD patterns of BCF-2.

Fig. S6. Powder XRD pattern of (a) the exchanged solids by immersing BCF-2 in NaNO₃ aqueous solution for 2 days and (b) the resulting solid by heating the sample (a) with DMF at 150 °C for 2 days.
Fig. S1
Fig. S3
Fig. S4
Fig. S5
Fig. S6