Supporting Information

Synthesis of Mn$_3$O$_4$ nanowires and its transformation to LiMn$_2$O$_4$ polyhedrons, application of LiMn$_2$O$_4$ as cathode in lithium-ion battery

Xing Zhang, Zheng Xing, Yang Yu, Qianwen Li, Kaibin Tang, Tao Huang, Yongchun Zhu, Yitai Qian, Dong Chen

Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China

Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China

Jiangsu Highstar Battery Manufacturing CO., LTD.

Fig. S1 XRD patterns of products obtained at 200 °C for different reaction times: (a) 0.5 h, (b) 1.0 h, (c) 6 h and (d) 12 h.

Fig. S2 (a) and (b) are the XRD pattern and the TEM image of the brown precipitate, respectively.

Table 1 Experimental pH parameter for the synthesis of Mn$_3$O$_4$ materials

Fig. S3 The SEM images of obtained: (a) sample (4); (b) sample (5).

Fig. S4 The SEM images (a) N$_2$ protecting, (b) excess O$_2$.

Fig. S5 (a) SEM of the LiMn$_2$O$_4$ using Mn$_3$O$_4$ nanocubes as raw material at 750 °C for 6h. (b) Discharge curves at 0.1 C, 0.2 C and 0.5 C, the capacity are 79.8, 79.2 and 72.9 mAh/g, respectively.

Fig. S1 XRD patterns of products obtained at 200 °C for different reaction times: (a) 0.5 h, (b) 1.0 h, (c) 6 h and (d) 12 h.
Fig. S2 (a) and (b) are the XRD pattern and the TEM image of the brown precipitate, respectively.

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>MnSO₄</th>
<th>H₂O/Na₂B₄O₇</th>
<th>NaOH</th>
<th>pH value</th>
<th>morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>-</td>
<td>15 mL (1 mmol)</td>
<td>-</td>
<td>10.07</td>
<td>-</td>
</tr>
<tr>
<td>(2)</td>
<td>15 mL (1 mmol)</td>
<td>15 mL (1 mmol)</td>
<td>-</td>
<td>8.98</td>
<td>-</td>
</tr>
<tr>
<td>(3)</td>
<td>15 mL (1 mmol)</td>
<td>15 mL (1 mmol)</td>
<td>15 mL (1 mmol)</td>
<td>9.69</td>
<td>nanowires</td>
</tr>
<tr>
<td>(4)</td>
<td>15 mL (1 mmol)</td>
<td>15 mL (0 mmol)</td>
<td>0.267 M (some)</td>
<td>9.69</td>
<td>particles</td>
</tr>
<tr>
<td>(5)</td>
<td>15 mL (1 mmol)</td>
<td>15 mL (0 mmol)</td>
<td>15 mL (1 mmol)</td>
<td>9.45</td>
<td>particles and nanorods</td>
</tr>
</tbody>
</table>

Fig. S3 The SEM images of obtained: (a) sample (4); (b) sample (5).
Fig. S4 The SEM images (a) N$_2$ protecting, (b) excess O$_2$.

Fig. S5 (a) SEM of the LiMn$_2$O$_4$ using Mn$_3$O$_4$ nanocubes as raw material at 750 °C for 6h. (b) Discharge curves at 0.1 C, 0.2 C and 0.5 C, the capacity are 79.8, 79.2 and 72.9 mAh/g, respectively.