Supporting Information for:

Into the second dimension with ferrocene *bis*-amidinium salts

Francesca A. Stokes,* Martyn P. Coles,§ and Peter B. Hitchcock*

* Department of Chemistry, University of Sussex, Falmer, Brighton, UK.
§ School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand.
Fax: +64 (0)4 463 5241; Tel: +64 (0)4 463 6357; E-mail: martyn.coles@vuw.ac.nz

Contents

p2 Fig S1 Definition of *E*- and *Z*-
p2 Fig S2 Definition of α
p3 Fig S3 Definition of l
p3 Fig S4 Definition of ϕ_O and ϕ_N
p3 Fig S5 Definition of d_O and d_N
p4 Fig S6 Definition ss-Sp and ss-Rp
p5 Table S1 Summary of geometric data for [1]$_x$ and [2]$_x$
p6 Fig S7 Disorder in [‘BuCO$_2$···H···O$_2'$C‘Bu]$

p7 Fig S8 Contour map showing hydrogen H3x
Figure S1 Definition of \(E \)- and \(Z \)- with respect to distribution of substituents about a tri-substituted amidinium cation (for 1 and 2, \(R = \) ferrocenyl, \(R' = \) Cy)

\[
\begin{align*}
R' & \quad N - H \quad \Rightarrow \\
R & \quad N - H \quad \Rightarrow \\
R' & \quad N - H \quad \Rightarrow \\
\{E,E\} & \quad \{E,Z\} & \quad \{Z,Z\}
\end{align*}
\]

Figure S2 Definition of \(\alpha \) (dihedral angle between the amidinium and \(C_5 \)-ring, with +ve and –ve values defined relative to the \(E \)- and \(Z \)-nitrogen groups)

\[
\begin{align*}
\text{C}_5\text{-plane} & \quad +ve \\
\text{C}_5\text{-plane} & \quad -ve
\end{align*}
\]
Figure S3 Definition of l (the C$_5$–CN$_2$ bond length)

![Diagram of Fe with distances](image)

Figure S4 Definition of ϕ_{O} and ϕ_{N} (the bond angle at oxygen and nitrogen subtending the amidinium:carboxylate bridge)

![Diagram of bond angles](image)

Figure S5 Definition of d_{O} and d_{N} (the distance of the oxygen and nitrogen atoms from the C–CN$_2$ and C–CO$_2$ planes, respectively)

![Diagram of distances](image)
Figure S6 Definition ss-S_P and ss-R_P chirality, prioritizing the (E)-nitrogen group.
Table S1 Summary of geometric data for [1]_∞ and [2]_∞

<table>
<thead>
<tr>
<th></th>
<th>α, deg</th>
<th>l, Å</th>
<th>φO deg</th>
<th>dO, Å</th>
<th>φN, deg</th>
<th>dN, Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+26.3(2)</td>
<td>1.480(3)</td>
<td>O1 116.41(15)</td>
<td>−0.343(5)</td>
<td>N1 130.34(16)</td>
<td>−0.293(5)</td>
</tr>
<tr>
<td></td>
<td>+153.7(2)</td>
<td></td>
<td>O2 140.26(18)</td>
<td>−0.367(5)</td>
<td>N2 129.69(15)</td>
<td>2.590(4)</td>
</tr>
<tr>
<td>2</td>
<td>+39.8(1)</td>
<td>1.477(2)</td>
<td>O1 ~135<sup>a</sup></td>
<td>~0.1<sup>a</sup></td>
<td>N1 ~101<sup>a</sup></td>
<td>~1.9<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td>+39.8(1)</td>
<td></td>
<td>O2 ~110<sup>a</sup></td>
<td>-</td>
<td>N2 ~133<sup>a</sup></td>
<td>~1.0<sup>a</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O3 ~109<sup>a</sup></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O4 ~147<sup>a</sup></td>
<td>~0.1<sup>a</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a disorder in the [^tBuCO₂····H···O₂^tC^tBu][−] anion precludes accurate determination of these distances and angle. The values provided are meant simply as an indication and should not be used for meaningful comparisons.
Figure S7 Representation of the disorder in the \([\text{tBuCO}_2 \cdots \text{H} \cdots \text{O}_2\text{tBu}]^-\) anion
Figure S8 Contour map showing residual electron density corresponding to hydrogen H3x between the two pivalate anions.