Supporting information

Synthesis of Monodisperse CeO$_2$ Octahedra Assembled by Nano-sheets with exposed \{001\} facets and Catalytic property

Xiguang Han,*ab Liang Li,a Chao Wanga

aDepartment of Chemistry, School of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou, Jiangsu, 221116, China.

bJiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Xuzhou Normal University, Xuzhou, 221116, P. R. China

E-mail: xghan@xznu.edu.cn

Experimental Section:

Synthesis of Monodisperse CeO$_2$ Octahedra Assembled by Nano-sheets:

In a typical synthesis, Ce(NO$_3$)$_3$•6H$_2$O (0.434 g, 1 mmol) and PVP (K-30, M=58000, 0.335 g, 0.006 mmol, m$_{\text{Ce(NO}_3)_3\cdot6\text{H}_2\text{O}}$/m$_{\text{PVP}}$ = 1.300) were in order added to the mixed solvent of ethanol and distilled water (6 mL, v/v of 1:1). The mixed solvent placed in a beaker was put into ultrasonic cleaning machine (Frequency: 40 KH, Power: 50 W) for about 5 minutes. The purpose of treatment is fully mixed of the reactants. The resulting solution was transferred into a Teflon-lined stainless-steel autoclave and was kept at 200 °C for 12 h. The products were collected by centrifugation at 10000 rpm, and washed several times with deionized water and ethanol.

The composition and phase of the as-prepared products were acquired by the powder X-ray diffraction (XRD) pattern using a Panalytical X-pert diffractometer with CuKα radiation. The morphology and crystal structure of as-prepared products were observed by scanning electron microscopy (SEM, S4800), and high-resolution transmission electron microscopy (HRTEM, FEI Tecnai-F30) with an acceleration voltage of 300 kV. All TEM samples were prepared from depositing a drop of diluted suspensions in ethanol on a carbon film coated copper grid.

Measurement of catalytic CO oxidation. The catalytic activity of CeO$_2$ catalysts towards CO oxidation was carried out in a continuous flow reactor. The reaction gas, 10 mL/min 5% CO in nitrogen and 40 mL/min air, was fed to catalyst particles.
Steady-state catalytic activity was measured at each temperature with the reaction temperature rising from room temperature to 380 °C in step of 20 °C. The effluent gas was analyzed on-line by an on-stream gas chromatograph (FuLi 9790II) equipped with a TDX-01 column.

Table S1: The percentage of CO conversion to CO₂ at different reaction temperature

<table>
<thead>
<tr>
<th>Reaction temperature (°C)</th>
<th>140</th>
<th>160</th>
<th>180</th>
<th>200</th>
<th>220</th>
<th>240</th>
<th>260</th>
<th>280</th>
<th>300</th>
<th>320</th>
<th>340</th>
<th>360</th>
<th>380</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion to CO₂ (%) (CeO₂ assemble by nanosheets)</td>
<td>2.3</td>
<td>4.5</td>
<td>13.1</td>
<td>32.8</td>
<td>61.7</td>
<td>87.3</td>
<td>98.1</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Conversion to CO₂ (%) (CeO₂ assemble by nanoparticles)</td>
<td>0.0</td>
<td>0.0</td>
<td>1.3</td>
<td>3.5</td>
<td>9.4</td>
<td>17.5</td>
<td>39.4</td>
<td>59.9</td>
<td>75.6</td>
<td>89.5</td>
<td>97.2</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>