Supplementary Information

\[\text{[Ni(C}_{17}\text{H}_{20}\text{N}_{4})_4]\text{[H}_5\text{PMo}_{8}\text{V}_{18}\text{O}_{40}(\text{V}_{\text{IV}}\text{O})_2]\cdot 8\text{H}_2\text{O}:\] confinement of heteropoly anions in Ni-containing rigid concave surfaces with high catalytic activity in the oxidation of styrene

Jie Fu,a Haixia Sun,b Yan Xu,*a Congling Wang,a Hongke Liub

a College of Chemistry and Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China.
b Jiangsu Province Key Laboratory of Biofunctional Material, School of Chemistry and Environmental Science, Nanjing Normal University, Nanjing 210046, PR China. E-mail: liuhongke@njnu.edu.cn

Contents:

1. Details for catalytic activity experiment.

2. Figure S1 The view of the discrete acyclic water pentamer in 1.

3. Figure S2 The TG curve of compound 1.

4. Figure S3 IR spectra of compound 1.

5. Table S1 The O···O distances and O···O···O angles in water pentamer of 1.

6. Table S2 Selected bond lengths (Å) for 1.
Details for catalytic activity experiments:

The oxidation of styrene was performed in a 50 ml double necked round bottom flask fitted in a water cooled condenser and a magnetic stirrer. 13 mmol styrene, 15 ml solvent (CH$_3$CN) and 100 mg title compound were mixed in the flask and kept the temperature at 333 K, then 36 mmol dilute hydrogen peroxide (30%) was added to the flask. The mixture was analyzed by a gas chromatograph (GC-6890, FID; 30 m × 0.32 mm capillary column) after 3h reaction. The major products obtained were benzaldehyde and small amount of epoxide and benzoic acid with the conversion of styrene was 90% and the selectivity of benzaldehyde, epoxide and benzoic acid in the oxidation of styrene were 69.7%, 3.9% and 26.4%, respectively.

![Diagram](image)

Fig. S1 A view of the discrete acyclic water pentamer in 1.
Fig. S2 The TG curve of compound 1.

IR spectrum: 3414 cm\(^{-1}\), \(\nu\)(O-H); 1619 cm\(^{-1}\), 1383 cm\(^{-1}\), \(\nu\)(C-C), \(\nu\)(C-N); 1081 cm\(^{-1}\), \(\nu\)(P-O); 940 cm\(^{-1}\), \(\nu\)(Mo=O); 781 cm\(^{-1}\), \(\nu\)(Mo-O-Mo); 620 cm\(^{-1}\), \(\nu\)(Mo-O)

Fig. S3 IR spectra of compound 1.

Table S1 The O···O distances and O···O···O angles in water pentamer of 1.

<table>
<thead>
<tr>
<th>Distance</th>
<th>O···O distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O1W···O3W</td>
<td>2.740(14)Å</td>
</tr>
<tr>
<td>O3W···O4W</td>
<td>2.693(78)Å</td>
</tr>
<tr>
<td>O1W···O3W···O4W</td>
<td>101.136(376)°</td>
</tr>
<tr>
<td>O3W···O4W···O2W</td>
<td>101.608(308)°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance</th>
<th>O···O···O angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O4W···O2W···O5W</td>
<td>86.623(337)°</td>
</tr>
</tbody>
</table>

Table S2 Selected bond lengths (Å) for 1

<table>
<thead>
<tr>
<th>Atom</th>
<th>Bond Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo(1)-O(15)</td>
<td>1.690(3)</td>
</tr>
<tr>
<td>Mo(1)-O(7)</td>
<td>1.788(3)</td>
</tr>
<tr>
<td>Mo(1)-O(13)</td>
<td>1.827(3)</td>
</tr>
<tr>
<td>Mo(1)-O(18)#1</td>
<td>2.056(2)</td>
</tr>
<tr>
<td>Mo(1)-O(22)</td>
<td>2.064(3)</td>
</tr>
<tr>
<td>Mo(1)-O(17)</td>
<td>2.436(3)</td>
</tr>
<tr>
<td>Mo(2)-O(9)</td>
<td>1.697(3)</td>
</tr>
<tr>
<td>Mo(2)-O(6)</td>
<td>1.792(3)</td>
</tr>
<tr>
<td>Mo(2)-O(14)</td>
<td>1.815(3)</td>
</tr>
<tr>
<td>Mo(2)-O(18)</td>
<td>2.071(2)</td>
</tr>
<tr>
<td>Mo(2)-O(22)</td>
<td>2.085(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Mo(2)-O(17)</td>
<td>2.437(3)</td>
</tr>
<tr>
<td>Mo(3)-O(4)</td>
<td>1.695(3)</td>
</tr>
<tr>
<td>Mo(3)-O(11)</td>
<td>1.798(3)</td>
</tr>
<tr>
<td>Mo(3)-O(12)</td>
<td>1.800(3)</td>
</tr>
<tr>
<td>Mo(3)-O(8)#1</td>
<td>2.049(2)</td>
</tr>
<tr>
<td>Mo(3)-O(20)</td>
<td>2.082(3)</td>
</tr>
<tr>
<td>Mo(3)-O(5)#1</td>
<td>2.459(2)</td>
</tr>
<tr>
<td>Mo(4)-O(3)</td>
<td>1.695(3)</td>
</tr>
<tr>
<td>Mo(4)-O(10)</td>
<td>1.792(3)</td>
</tr>
<tr>
<td>Mo(4)-O(16)</td>
<td>1.831(3)</td>
</tr>
<tr>
<td>Mo(4)-O(20)</td>
<td>2.047(3)</td>
</tr>
<tr>
<td>Mo(4)-O(8)</td>
<td>2.070(2)</td>
</tr>
<tr>
<td>Mo(4)-O(5)</td>
<td>2.440(3)</td>
</tr>
<tr>
<td>P(1)-O(5)</td>
<td>1.534(3)</td>
</tr>
<tr>
<td>P(1)-O(5)#1</td>
<td>1.534(3)</td>
</tr>
<tr>
<td>P(1)-O(17)</td>
<td>1.537(3)</td>
</tr>
<tr>
<td>P(1)-O(17)#1</td>
<td>1.537(3)</td>
</tr>
<tr>
<td>Ni(1)-N(4)#1</td>
<td>2.082(4)</td>
</tr>
<tr>
<td>Ni(1)-N(4)</td>
<td>2.082(4)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z-1/2 #2 x,y-1,z #3 x,y+1,z