Supporting information

Fig. S1 View of the 3D porous framework of 1

Fig. S2 View of the 3D porous framework of 2
Fig. S3 Schematic view of the 3-fold interpenetrating (3,5)-connected network in 2.
Heating at 150°C under vacuum

As-synthesized

Simulated

Fig. S4 PXRD patterns for 1(a) and 2(b).
Fig. S5 The TGA and DTA curves of 1(a) and 2 (b).
Fig. S6 1H-NMR spectrum for as-prepared 1 after digesting in DCl solution. The total integration value of 27.0 at peaks 1 to 3 is attributed to 27 aromatic protons for H$_3$BBC. Comparing to the integration of BBC, 12.4 DMF (peaks 4 to 6, 91.0 H) and 1.0 (CH$_3$)$_2$NH$_2^+$ were also observed. From the molar ratio, the empirical formula is [Zn(BBC)(H$_2$O)$_2$](Me_2NH_2)·12DMF.

Fig. S7 1H-NMR spectrum for as-prepared 2 after digesting in DCl solution. The total integration value of 30.0 at peaks 1 to 6 is attributed to 30 aromatic protons for
H$_3$BBC and NH$_2$-BDC. Comparing to the integration of BBC, 10.0 DMF (peaks 7 to 9, 75.83 H) and 1.0 (CH$_3$)$_2$NH$_2^+$ were also observed. From the molar ratio, the empirical formula is [Zn$_2$(BBC)(NH$_2$-BDC)] (Me$_2$NH$_2$)·10DMF.

Fig. S8 Solid-state CD spectra of 10 crystals of compound 2 from one crystallization (calculated ee = 60%), showing A enantiomers and B enantiomers respectively.