Supporting Information


Jin-Lin Hu, Hai-Sheng Qian,* Yong Hu, Zheng-Quan Li, Guo-Xiu Tong, Tao-Kai Ying, Pei-Jun Gong, Shi-You Hao, Hong-Bao Zhang, Liang-Chao Li

Department of Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China.

Fig. S1. (a,b) FESEM images of the as-prepared TiO$_2$ /SiO$_2$ composite microspheres after calcination at 500 °C for 2 h.

Fig. S1 show the FESEM images of the as-prepared TiO$_2$ /SiO$_2$ microspheres after calcination at 500 °C for 2 h, in which hollow microspheres have been observed and the structure of the formed microspheres collapses due to the decomposition of the siloxane polymers adsorbed on the surface of TiO$_2$ nanoparticles to get SiO$_2$ by releasing CO$_2$ while these TiO$_2$ nanoparticles aggregate with each other to form hollow microstructures.
Fig. S2. N$_2$ adsorption-desorption isotherm of the sample obtained after calcination of the product shown in Figure 1 with 500°C for 2 h.