Supplementary information

New 3D metal phosphonates with bright tunable luminescence for the reversible sensing of nitrobenzene

Ruibiao Fu*, Shengmin Hu, Xintao Wu

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002 China
* Corresponding author. E-mail: furb@fjirsm.ac.cn

Materials and instrumentation

1,4-(((H₂O₃PCH₂)(HOOCCH₂)NCH₂)₂C₆H₄ was prepared by N-alkylation reaction. Other chemicals were obtained from commercial sources without further purification. Elemental analyses were carried out with a Vario EL III element analyzer. Infrared spectra were obtained on a Nicolet Magna 750 FT-IR spectrometer. Photoluminescent properties were investigated in the solid state at room temperature with a F-7000 FL spectrophotometer and an Edinburgh FLS920 fluorescence spectrometer. Thermogravimetric/Differential Thermal analysis (TG-DTA) was performed on a Netzsch STA449C at a heating rate of 10 °C·min⁻¹ from room temperature to 1000 °C under an air gas flow. Powder XRD patterns were acquired on a DMAX-2500 diffractometer using CuKα radiation under ambient environment. The mass spectrum was recorded on a Varian 4000 gas chromatograph-mass spectrometer.

Synthesis of [Zn₂(H₂L)] (1). A mixture of H₆L (0.0716 g, 0.163 mmol) and Zn(CH₃COO)₂·2H₂O (0.0457 g, 0.208 mmol) in 8.0 mL distilled water with the pH value adjusted to 2.6, was sealed into a Parr Teflon-lined autoclave (23 mL) and heated at 140 °C for 120 h. After slow cooling to room temperature with a rate of 0.045 °C·min⁻¹, colorless crystals were obtained. Yield: 0.0338 g (57 %). Anal. Calc. for C₁₄H₁₈N₂O₁₀P₂Zn₉: C 29.66, H 3.20, N 4.94 %. Found: C 29.55, H 3.27, N 4.93 %. Except for few additional small peaks at high angle, experimental powder XRD patterns for solid 1 are consistent with those of simulated from single-crystal X-ray data of compound 1. Furthermore, luminescent excitation and emission spectra of as-prepared 1 are same to those of single crystal of 1. These results indicate the final product is almost pure. IR (KBr pellet, cm⁻¹): 3347w(νO-H), 3011w, 2947w(νC-H), 2926w, 2761w, 2691w, 2598w, 1651s(νasCO₂), 1456m, 1430w, 1413w, 1396w, 1385m, 1337m, 1312w, 1283w, 1177s(νP=O), 1116s(νP=O), 1046s(νP=O), 984w, 974w, 941w, 924w, 882w, 849w, 730w, 600w, 559w, 525w.

Synthesis of [Co₂(H₂L)] (2). A mixture of H₆L (0.0504 g, 0.114 mmol) and Co(CH₃COO)₂·4H₂O (0.0487 g, 0.196 mmol) in 6.0 mL distilled water with the pH
value adjusted to 2.0, was sealed into a Parr Teflon-lined autoclave (23 mL) and heated at 140 °C for 120 h. After slow cooling to room temperature with a rate of 0.045 °C·min⁻¹, red crystals were obtained as a homogenous phase based on powder XRD patterns. Yield: 0.0021 g (3.9%). Anal. Calc. for C_{14}H_{18}N_{2}O_{10}P_{2}Co_{2}: C 30.35, H 3.27, N 5.06 %. Found: C 30.58, H 3.42, N 5.01 %.

IR (KBr pellet, cm⁻¹): 3434s(υO-H), 2948w(υC-H), 2914w, 1568s(υasCO), 1450m, 1438w, 1423m, 1337m, 1314w, 1278w, 1184s(υP=O), 1150s(υP-O), 1057s(υP-О), 979w, 966w, 941m, 894m, 831w, 742m, 636m, 583m, 520w, 492w.

Heating treatment: Solids 1-250 and 1-300 were obtained after polycrystalline of 1 was heated at 250 and 300 °C for two hours under an air atmosphere, respectively, and then naturally cooled to room temperature. Anal. Calc. for solid 1-300 (C_{14}H_{18}N_{2}O_{10}P_{2}Zn_{2}): C 29.66, H 3.20, N 4.94 %. Found: C 28.96, H 3.40, N 4.98.

X-Ray crystallography

X-ray data for 1-2 were collected at 293(2) K on a Rigaku Mercury CCD/AFC diffractometer using graphite-monochromated Mo Kα radiation (λ(Mo-Kα) = 0.71073 Å). Data of 1-2 were reduced with CrystalClear v1.3. The structure was solved by direct methods and refined by full-matrix least-squares techniques on F² using SHELXTL-97.¹ All non-hydrogen atoms were treated anisotropically. Positions of Hydrogen atoms were located from a difference Fourier map and assigned with fixed isotropic thermal parameters. Crystallographic data for compounds 1-2 are summarized in Table S1. Selected bond lengths and angles for compounds 1 and 2 are listed in Table S2 and S3, respectively. CCDC 875032 (1) and 875033 (2).
Table S1. Crystallographic data for compounds 1 and 2

<table>
<thead>
<tr>
<th>Compounds</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${14}$H${18}$N2O${10}$P$_2$Zn$_2$</td>
<td>C${14}$H${18}$N2O${10}$P$_2$Co$_2$</td>
</tr>
<tr>
<td>FW</td>
<td>566.98</td>
<td>554.10</td>
</tr>
<tr>
<td>Space group</td>
<td>C2/c</td>
<td>C2/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>23.334(16)</td>
<td>23.255(5)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>9.933(5)</td>
<td>9.9714(17)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>8.938(5)</td>
<td>8.8080(18)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>112.509(7)</td>
<td>112.174(9)</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>1913.9(19)</td>
<td>1891.4(6)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>T(K)</td>
<td>293(2)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Measured/unique/observed reflections</td>
<td>7319 / 2174 / 1974</td>
<td>6851 / 2160 / 1775</td>
</tr>
<tr>
<td>D_{calc} (g cm$^{-3}$)</td>
<td>1.968</td>
<td>1.946</td>
</tr>
<tr>
<td>μ (mm$^{-1}$)</td>
<td>2.733</td>
<td>1.983</td>
</tr>
<tr>
<td>GOF on F^2</td>
<td>1.088</td>
<td>1.201</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.0226</td>
<td>0.0387</td>
</tr>
<tr>
<td>$R1^a [I>2\sigma(I)]$</td>
<td>0.0305</td>
<td>0.0465</td>
</tr>
<tr>
<td>wR2b [all data]</td>
<td>0.0782</td>
<td>0.1833</td>
</tr>
</tbody>
</table>

a $R1 = \Sigma([F_o] - |F_c|)/\Sigma |F_o|$.

b $wR2 = \{ \Sigma w [(F_o^2 - F_c^2)] / \Sigma w [(F_o^2)] \}^{0.5}$.

Electronic Supplementary Material (ESI) for CrystEngComm
This journal is © The Royal Society of Chemistry 2012
Table S2. Selected bond lengths (Å) and angles (°) for 1

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn(1)-O(1)</td>
<td>2.039(2)</td>
<td>Zn(1)-O(5)(^b)</td>
<td>2.093(2)</td>
</tr>
<tr>
<td>Zn(1)-O(2)(^a)</td>
<td>1.991(2)</td>
<td>Zn(1)-N(1)</td>
<td>2.239(2)</td>
</tr>
<tr>
<td>Zn(1)-O(4)</td>
<td>2.067(2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-Zn(1)-O(2)(^a)</td>
<td>96.22(9)</td>
<td>O(2)(^a)-Zn(1)-O(5)(^b)</td>
<td>92.87(9)</td>
</tr>
<tr>
<td>O(1)-Zn(1)-O(4)</td>
<td>117.02(8)</td>
<td>O(2)(^a)-Zn(1)-N(1)</td>
<td>174.15(7)</td>
</tr>
<tr>
<td>O(1)-Zn(1)-O(5)(^b)</td>
<td>141.85(8)</td>
<td>O(4)-Zn(1)-O(5)(^b)</td>
<td>98.49(9)</td>
</tr>
<tr>
<td>O(1)-Zn(1)-N(1)</td>
<td>84.83(8)</td>
<td>O(4)-Zn(1)-N(1)</td>
<td>77.82(7)</td>
</tr>
<tr>
<td>O(2)(^a)-Zn(1)-O(4)</td>
<td>96.64(8)</td>
<td>O(5)(^b)-Zn(1)-N(1)</td>
<td>89.81(8)</td>
</tr>
</tbody>
</table>

Symmetry codes: a - x + 1/2, y - 1/2, - z + 1/2; b x, - y, z - 1/2.

Table S3. Selected bond lengths (Å) and angles (°) for 2

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(1)-O(1)</td>
<td>2.030(3)</td>
<td>Co(1)-O(5)(^b)</td>
<td>2.091(3)</td>
</tr>
<tr>
<td>Co(1)-O(2)(^a)</td>
<td>2.003(3)</td>
<td>Co(1)-N(1)</td>
<td>2.236(3)</td>
</tr>
<tr>
<td>Co(1)-O(4)</td>
<td>2.064(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)-Co(1)-O(2)(^a)</td>
<td>96.46(13)</td>
<td>O(2)(^a)-Co(1)-O(5)(^b)</td>
<td>93.81(14)</td>
</tr>
<tr>
<td>O(1)-Co(1)-O(4)</td>
<td>115.58(13)</td>
<td>O(2)(^a)-Co(1)-N(1)</td>
<td>174.31(13)</td>
</tr>
<tr>
<td>O(1)-Co(1)-O(5)(^b)</td>
<td>143.79(14)</td>
<td>O(4)-Co(1)-O(5)(^b)</td>
<td>97.39(14)</td>
</tr>
<tr>
<td>O(1)-Co(1)-N(1)</td>
<td>84.47(12)</td>
<td>O(4)-Co(1)-N(1)</td>
<td>77.63(13)</td>
</tr>
<tr>
<td>O(2)(^a)-Co(1)-O(4)</td>
<td>96.95(13)</td>
<td>O(5)(^b)-Co(1)-N(1)</td>
<td>88.66(13)</td>
</tr>
</tbody>
</table>

Symmetry codes: a - x + 1/2, y - 1/2, - z + 1/2; b x, - y, z + 1/2.

Fig. S1 Polyhedral view of the 2D hybrid layer in 1.
Fig. S2 Polyhedral view of the 3D framework in 1.

Fig. S3 TGA (top) and DTA (bottom) curves of 1.
Fig. S4 TGA curve of 2.

Fig. S5 Room-temperature solid-state fluorescent intensity as a function of time for solid 1 with $\lambda_{em} = 399$ nm under excitation of 335nm.

Fig. S6 Emission and excitation spectra of as-prepared 1 under ambient temperature.
Fig. S7 Emission and excitation spectra of solid 1-250 under ambient temperature.

Fig. S8 Emission and excitation spectra of solid 1-300 under ambient temperature.

Fig. S9 Normalized emission and excitation spectra of solid 1 at 10 K.
Fig. S10 Room-temperature relative emission intensities of emission for solid 1 (purple), as well as solid 1 has been exposed to the equilibrated vapors of nitrobenzene (black) for 3-10 days: (a) first cycle, (b) second cycle and (c) third cycle.

References