Supplementary Information

Hydrothermal synthesis of layered $\text{Li}_{1.81}\text{H}_{0.19}\text{Ti}_2\text{O}_5\cdot x\text{H}_2\text{O}$ nanosheets and their transformation to single-crystalline $\text{Li}_4\text{Ti}_5\text{O}_{12}$ nanosheets as the anode materials for Li-ion batteries

Na Li, a Tao Mei, a Yongchun Zhu, *,a Linlin Wang, a Jianwen Liang, a Xing Zhang, a Yitai Qian *,a,b and Kaibin Tang a

a Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, PR China. Fax: +86-551-360-7402; Tel: +86-551-360-1589; E-mail: ytqian@ustc.edu.cn

b School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.

Fig. S1 The XRD pattern of the products after heat treatment at 350, 500 and 600 °C.

Fig. S2 SEM images of the samples calcined at 350 °C (a), 500 °C (b), and 600 °C (c).
Fig. S3 Galvanostatic charge/discharge curves for Li₄Ti₅O₁₂ prepared at 350, 500 and 600 °C between 1.0 and 3.0 V at a rate of 1 C.

Fig. S4 N₂ adsorption–desorption BET isotherm.