Electronic Supplementary Information

Unique Zn-doped SnO₂ Nano-Echinus with Excellent Transport and Light Harvesting Properties as Photoanode Materials for High Performance Dye-Sensitized Solar Cell†

Zhengdao Li,a,c Yong Zhou,*a,b,d Tao Yu,a,b Jianguo Liu, a,b,c Zhigang Zou*,a,b,c

a National Laboratory of Solid State Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), Nanjing University, Nanjing 210093, P. R. China. Fax: 86-25-83686632; Tel: 86-25-83686630
E-mail: zhouyong1999@nju.edu.cn (Y.Zhou), zgzou@nju.edu.cn (Z.G.Zou)
b School of Physics, Nanjing University, Nanjing University, Nanjing 210093, P. R. China.
c Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, P. R. China.
d National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Fig. S1 (a) Photo of the echinus copyright permission from http://www.3lian.com/down/pic/4/410/41188.html. (b) Schematic illustration of the synthesized nano-echinus, showing the nanowire-based shell and interior aggregates of tiny particles.
Fig. S2 FE-SEM images of the product after annealing the Zn-doped SnO$_2$ nano-echinus at 500 °C for 0.5 h.
Fig. S3 (A) XRD patterns of (a) the pure SnO₂, and Zn-doped SnO₂ samples (b) before and (c) after annealing irradiation. (B) XRD patterns of the corresponding (101) peak of the pure and Zn-doped SnO₂ samples.
Fig. S4 FE-SEM images of the pure SnO$_2$ at different magnification.
Fig. S5 The typical XPS spectra of the as-prepared pure and Zn-doped SnO$_2$: (a) the survey spectra, (b) the high-resolution spectra of Zn 2p, (c) the high-resolution spectra of Sn 3d, and (d) the high-resolution spectra of O 1s.
Fig. S6 Nitrogen sorption isotherms of the Zn-doped SnO$_2$. Inset shows the corresponding pore diameter distribution of sample.
Fig. S7 XRD patterns of as-obtained the Zn-doped SnO$_2$ at different reaction time of (a) 4h (b) 10h (c) 16h (d) 20h.
Fig. S8 The high-resolution spectra of Zn 2p of the as-obtained Zn-doped SnO$_2$ at different reaction time of: (a) 4 h, (b) 10 h, (c) 16 h, (d) 20 h.
Fig. S9 FE-SEM image of (a) the microscale spheres with rough surface formed with pure H$_2$O as solvent. (b) the mixture of Zn-doped SnO$_2$ nanoflowers and particles formed with pure En as solvent.
Figure S10. Diffuse-reflectance spectra of the two films after the dye absorption.