Electronic Supporting Information

Shape-Controlled Hydrothermal Synthesis and Growth
Mechanism of Bi$_4$Ti$_3$O$_{12}$ Nanostructure

Fang Wang a,b, Jinbin Wang a,b,*, Xiangli Zhong a,b,*, Bo Li a,b, Jun Liu a,b, Di Wu c, Dan Mo c, Daoyou Guo a,b, Shuoguo Yuan a,b, Kedong Zhang a,b, Yichun Zhou a,b

a Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Xiangtan University, Hunan Xiangtan 411105, China
b Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Hunan Xiangtan 411105, China
c National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China

Author to whom correspondence should be addressed. Tel: 86-731-58292199, Fax: 86-731-58298119, Electronic mail: jbwang@xtu.edu.cn; xlzhong@xtu.edu.cn
Figure S1. SEM images of the as-synthesized BIT products obtained at 200 °C in the presence of different concentration of mineralizer at 24 h: (a) 1M NaOH, (b) 3M NaOH, (c) 2M KOH, and (d) 3M KOH.
Figure S2. XRD patterns of the as-synthesized BIT products obtained at 200 °C in the presence of different concentration of mineralizer at 24 h: (a) 1M NaOH, (b) 3M NaOH, (c) 2M KOH, and (d) 3M KOH.
Figure S3. XRD patterns of the as-synthesized BIT products obtained at 200 °C in the presence of 1 M KOH at different reaction time: (a) 0 h, (b) 12h, (c) 36h and (d) 60 h.