Possible geometrical isomers and conformers for 1,3-bis(cyanoxime)benzene.

7, trans-trans, syn-syn

- 8, trans-cis, syn-syn
- 9, cis-cis, syn-syn

1

Possible geometrical isomers and conformers for 1,4-bis(cyanoxime)benzene.

I, trans, anti-anti

V, trans, syn-anti

VI, cis, syn-anti

Empirical formula $C_{10} H_7 N_3 O$ Formula weight 185.19 Temperature 296(2) K 0.71073 Å Wavelength Triclinic Crystal system P -1. Space group #2 Unit cell dimensions a = 5.676(4) Å $\alpha = 102.487(7)^{\circ}$. b = 9.573(7) Å $\beta = 101.186(7)^{\circ}$. c = 9.600(7) Å $\gamma = 106.568(7)^{\circ}$. $469.6(6) \text{ Å}^3$, Volume, Z 2 1.310 Mg/m^{3} Density (calculated) 0.090 mm^{-1} Absorption coefficient F(000) 192 Index ranges -6<=h<=6, -11<=k<=11, -11<=l<=11 **Reflections collected** 3673 Independent reflections 1764 [R(int) = 0.0462]Completeness to theta = 25.67° 98.7 % Max. and min. transmission 0.7454 and 0.4930 Full-matrix least-squares on F^2 Refinement method Data / restraints / parameters 1764 / 0 / 139 Goodness-of-fit on F^2 0.997 Final R indices [I>2sigma(I)] R1 = 0.0696, wR2 = 0.1575R indices (all data) R1 = 0.1390, wR2 = 0.1938Extinction coefficient 0.029(13) 0.451 and -0.165 $e.\text{\AA}^{\text{-3}}$ Largest diff. peak and hole

Crystal data and structure refinement for the 1,3-BCO-monooxime.

Hydrogen bonds for 1,3-BCO-monooxime [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(1)-H(1O)N(3)#1	1.09(6)	1.67(6)	2.749(4)	172(4)	

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z

Molecular structure and numbering scheme for the 1,3-BCO-monooxime. An ORTEP drawing at 50% thermal ellipsoids probability level. Selected bonds lengths (Å) are indicated in yellow.

Actual TLC (MeOH/CHCl3) of all compounds involved into the synthesis of 1,3-BCO.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2012

¹H NMR spectra of pure, one TLC spot sample of the 1,3-BCO in dmso-d₆ at 293 K: **A** – panoramic view, **B** – details. Red arrows indicate minor presence of the second geometrical isomer.

~

UV-visible spectra of 1,3-BCO (top) and 1,4-BCO (nbottom) in different solvents upon addition of KOH with the formation of dianion. Shown $n \rightarrow \pi^*$ and $n \rightarrow \sigma^*$ (only for 1,3-BCO) transitions in visible region of spectrum.

Tables of H-bonding for studied bis-cyanoximes.

1,4-BCO \cdot H₂O [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(3S)#1	0.84	1.93	2.748(3)	165.5
O(3S)-H(1S)N(4)#2	0.67(4)	2.20(4)	2.851(4)	167(5)

Symmetry transformations used to generate equivalent atoms: #1 -x+3/4, y+1/4, z+3/4; #2 x, y, z+1

1,3-BCO · DMF [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(1S)	0.84	1.83	2.664(2)	169.7
O(1)-H(1)O(1S)#2	0.84	1.83	2.664(2)	169.7

Symmetry transformations used to generate equivalent atoms: #1 x,y,-z+3/2 #2 x,y,-z+1/2

1,4-BCO [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)N(2)#2	0.84	1.99	2.814(2)	165.6

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+1 #2 -x-1/2,y+1/2,z

1,4-BCO · DMSO [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(1S)#2	0.92(2)	1.68(2)	2.6044(14)	176(2)

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+2 #2 x+1,y,z

H-bonding pattern in the structure of 1,3-BCOxH₂O viewed from a fragment of 4 unit cells. **A** – intermolecular dimer; **B** – π – π stacking between layers of bis-cyanoxime; **C** – "herring bone" motif betwee H-bonded and π -stacked layers.

Two views of 3 unit cells showing only trapped water molecules in a space filling representation: \mathbf{A} – view along *c*-direction, \mathbf{B} – along cell diagonal. There are 13 channels in the unit cell which occupied with slightly tilted relatively to each other water molecules.

Fragment of crystal structure of 1,3-BCO showing trapped inside lattice water molecule. Two different views showing geometry of H-bonding.

Successfully modeled two positional disorder of the solvent molecule in the structure of 1,3-BCO DMF. The mirror plane passes through O1s atom as shown with dotted line. Symmetry transformation for #1: x, y, $\frac{1}{2}$ - z

H-bonding in the structure involves two bis(cyanoximes) and one DMF molecule. A planar H-bonded sheet is formed along c direction.

Two orthogonal views of 2.5 unit cells in the structure of 1,3-BCO DMF. Large channels along b axis are filled with the solvent molecules. Molecules of cyanoximes are omitted and only disordered solvent molecules are shown in space-filling representation. **A** – view along *a* direction, **B** – view along *b*, **C** – stick representation of DMF molecules to show the tilt angle between solvent molecules.

Two orthogonal views of the unit cell content in the layered structure of 1,3-BCO DMF: **A** – along *a* axis, **B** – along *c* direction.

Organization of crystal lattice in the structure of 1,4-BCO. Two orthogonal views of the fragment in the structure showing only one selected column of H-bonded molecules in two adjacent two unit cells. \mathbf{A} – view along *a* direction, \mathbf{B} – view along *b* direction.

Organization of crystal lattice in the structure of 1,4-BCO: same fragment only shown at different projections to illustrate H-bonding pattern which represents "herring bone" type layers running along *b* direction. Hydrogen bonds are shown as dotted lines.

H-bonding in the structure of 1,4-BCO showing the shortest distance between two dioxime molecules separated by another one acting as a spacer.

Building block in the structure: zigzag chain of 1,4-bis(cyanoxime)benzene connected via H-bonds.

Actual microscope photographs of clear, suitable for the X-ray analysis crystals of 1,4-BCO x DMSO (**A**; ambient and polarized light) that grew up in dimethylsulfoxide, and opaque, non-suitable for crystallographic studies crystals of the dioxime when the solvent left after a week of exposure to air on a paper filter (**B**).

Details of the solvent packing into the crystal of 1,4-BCO x DMSO. Only solvent molecules occupying channels in the structure are shown; the dioxime molecules are omitted for clarity.

View along c

Two views of 4 DMSO molecules trapped between layers of the 1,4-BCO in the structure showing distant electrostatic C-H---S contacts.

Two orthogonal views of the fragment of structure of 1,4-BCO x DMSO showing layers of molecules (**A**) with solvent connected to the dioxime via H-bonds (**B**).

A little overlap between π -systems of the C-C=N fgragments (red arrows) contributes to stabilization of this structure that otherwise does not exhibit any significant π -stacking:

The GROW fragment in the structure of $Tl_2(1,3-BCO)$ (**A**) that is a centrosymmetric dimer, and two views of two unit cells along *c* (**B**) and *b* directions (**C**). Cell volume: 1165.32 Å³, structure occupies 830.18 Å³ (71.2%); accessible volume – 29.8%.

The GROW fragment in the structure of $Tl_2(1,4-BCO)$ (**A**), which is a centrosymmetric dimer, and prospective views of three unit cells along *ac* diagonal (**B**) showing elegant Tl_2O_2 rhombs assmbled in a ladder-type motif. Cell volume: 290.73 Å³, structure occupies 205.83 Å³ (70.8%); accessible volume – 29.2%.

Selected the most important crystal data for structures of two based on TI(I) and new bis-cyanoximes complexes that form metal-organic-frameworks.

	Tl ₂ (1,3-BCO)	Tl ₂ (1,4-BCO)	
Empirical formula	$C_{10} \ H_4 \ N_4 \ O_2 \ Tl_2$	$C_5 H_2 N_2 O Tl$	
Formula weight	620.91	310.46	
Temperature	120(2) K	120(2) K	
Crystal system	Monoclinic	Triclinic	
Space group	C2/c	P-1	
Unit cell dimensions	a = 21.672(4) Å;	a = 3.9696(15) Å;	
	b = 7.8698(13) Å;	b = 6.672(2) Å;	
	c = 6.9082(11) Å;	c = 11.149(4) Å;	
	α=90°	$\alpha = 83.551(5)^{\circ}$	
	β=98.487(2)°	$\beta = 82.254(5)^{\circ}$	
	$\gamma = 90^{\circ}$	$\gamma = 89.516(5)^{\circ}$	
Volume	1165.3(3) \AA^3	290.73(17) Å ³	
Ζ	4	2	
Density (calculated)	3.539 Mg/m^{3}	3.546 Mg/m ³	
Absorption coefficient	27.619 mm ⁻¹	27.675 mm^{-1}	
F(000)	1080	270	
Θ range for data collection	1.90 to 30.51°	1.86 to 26.20°	
Reflections collected	8280	3208	
Independent reflections	1757 [R(int) = 0.0474]	1158 [R(int) = 0.0418]	
Absorption correction	Semi-empirical from equivalents		
Refinement method	Full-matrix least-squares on F^2		
GOF on F^2	1.073	1.035	
Final R indices $[I>2\sigma(I)]$	R1 = 0.0388, $wR2 = 0.0813$	R1 = 0.0402, wR2 = 0.0972	
R indices (all data)	R1 = 0.0480, wR2 = 0.0862	R1 = 0.0464, wR2 = 0.0998	
Largest diff. peak and hole, e.Å-3	4.628 and -2.785	4.161 and -2.118	