Preparation and crystal structures of the isomeric series 4-tolyl-1,2,3,5-dithiadiazolyl, (o-MeC₆H₄CNSSN)₂, (m-MeC₆H₄CNSSN)₂ and (p-MeC₆H₄CNSSN)₂

Yassine Beldjoudi,^a Delia A. Haynes,^b* John J. Hayward,^a Wallace J. Manning,^b Douglas Pratt^c and Jeremy M. Rawson^a*

^a Department of Chemistry & Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, Canada. E-mail:

jmrawson@uwindsor.ca ^b Department of Chemistry and Polymer Science, Stellenbosch University, P. Bag X1, Matieland, 7602, Republic of South Africa. E-mail: dhaynes@sun.ac.za. ^c Department of Chemistry, Memorial University, St. John's, NL A1B 3X7, Canada.

Electronic Supplementary Information

Table S1 Selected crystal data for 1, 2 and 3

	1	2	3
common name	4- <i>p</i> -tolyl-1,2,3,5-	4- <i>m</i> -tolyl-1,2,3,5-	4-o-tolyl-1,2,3,5-
	dithiadiazolyl	dithiadiazolyl	dithiadiazolyl
chemical formula	$C_8H_7N_2S_2$	$C_8H_7N_2S_2$	$C_8H_7N_2S_2$
formula weight	195.28	195.28	195.28
crystal system	monoclininc	monoclinic	monoclinic
space group	C2/c	$P2_1$	$P2_{1}/c$
Z	16	4	32
Z'	2	2	8
a (Å)	20.940(4)	5.912(1)	7.859(2)
b (Å)	10.563(2)	13.360(3)	14.917(3)
c (Å)	14.998(3)	10.963(3)	55.36(1)
α (°)	90.00	90.00	90.00
β (°)	91.14(3)	105.11(3)	92.445(3)
γ (°)	90.00	90.00	90.00
temperature (K)	153(2)	173(2)	105(2)
calculated density (g	1.564	1.552	1.600
cm ⁻³)			
μ (mm ⁻¹)	0.579	0.574	0.592
independent	36732	9329	41346
reflections			
R _{int}	0.0597	0.0507	0.1111
R1 [I>2σ(I)]	0.0330	0.0362	0.0746

	1	2	3
	7.1(1)	5.0(1)	10.0(1)
twist angle between	/.1(1)	5.2(1)	19.9(1)
aryl and heterocyclic	6.4(1)	10.9(1)	24.4(1)
ring planes (°)			25.6(1)
			24.5(2)
			19.4(1)
			25.7(1)
			28.1(1)
			27.1(1)
intradimer S S (Å)	3.0230(9)	3.000(1)	3,123(2)
	3 0928(9)	3 156(1)	3.091(2)
	5.6726(5)	5.150(1)	3.01(2) 3.216(2)
			3.131(2)
			3.114(2)
			3.084(2)
			3.207(2)
			2.969(2)
SN	S11 N21 ^a 3.223(2)	S11 N12 ^b 3.548(2)	S11 N52 3 440(4)
	$N11S21^{a} 3.168(2)$	$S21N22^{b} 3.517(2)$	S12N52 3.234(4)
			S21N62 3.690(4)
			S21N62 3.340(4)
			S31N72 3.519(5)
			S31N72 3.288(4)
			S41N82 3.486(5)
			S41N82 3.279(4)
			$852N12^{\circ} 3.261(4)$
			$862N12^{\circ} 3.619(4)$
			$862N22^{\circ} 3.454(5)$
			$S72N22^{\circ} 3.628(4)$
			$872N32^{\circ} 3.361(5)$
			$S82N32^{\circ} 3.292(4)$
			$S82N42^{\circ} 3.481(5)$
a (1-x, -y, -z) b (-1-	+x, y, z) c (1+x, y, z)		

Table S2 Selected structural parameters for 1, 2 and 3

Figure S1: Variable Temperature EPR Spectra for 3 on heating from 300 to 350 K

All spectra recorded on a Bruker EMX plus X-band EPR spectrometer with modulation amplitude of 1 G_{pp} , modulation frequency 100 kHz, microwave power 6.633-6.649 mW* (single scan).

* All spectra were recorded using the same attenuation but the microwave frequency varied slightly 9.3516 – 9.3506 GHz on warming as the cavity was retuned at each temperature.

