Supporting Information

Metal-Organic Framework Architecture with Polyhedron-in-Polyhedron and Further Polyhedral Assembly

Ting-Ting Lian,a,b Shu-Mei Chen,a,*a,b Fei Wangb and Jian Zhangb

aCollege of Chemistry & Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China and bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. E-mail: csm@fzu.edu.cn
Figure S1. The crystal structure of 1.

Figure S2. Cu 2p spectra of 1 shown that the main component peak at higher BE (↑ 934.01 eV) is assigned to Cu$^{2+}$ ions. Observation of the satellite (939.68-943.62 eV) structure also is consistent with a copper oxidation state of +2.
Figure S3. The TG plots of 1, ethanol-exchanged sample 1 and CH$_2$Cl$_2$-exchanged sample 1.

Figure S4. Powder XRD patterns: (a) simulated one, (b) after removal of the guests, (c) ethanol-exchanged one, (d) dichloromethane-exchanged one.
Figure S5. H₂ adsorption isotherms of 1: (a) H₂ at 77K; (b)H₂ at 87 K.

Figure S6. CO₂ adsorption isotherms for 1 fitting by virial method.
Figure S7. The isosteric heat of CO\textsubscript{2} adsorption for 1 estimated by the virial equation.

Adsorption selectivity of CO\textsubscript{2}/N\textsubscript{2} calculation:
The CO\textsubscript{2} and H\textsubscript{2} sorption data for 1 measured up to 1 bar at different temperature were fitted by the virial equation (Figure S5, S6, S7).

\[
\ln(\textit{P}) = \ln(\textit{Va}) + (a_0 + a_1 \textit{Va} + a_2 \textit{Va}^2 + a_3 \textit{Va}^3)/\textit{T} + (b_0 + b_1 \textit{Va}) \quad (1)
\]

Where \textit{P} is pressure, \textit{Va} is amount adsorbed, \textit{T} is temperature, and \textit{a}_0, \textit{a}_1, \textit{a}_2, \textit{a}_3 and \textit{b}_0, \textit{b}_1 are temperature independent empirical parameters.

References:
Figure S8. The FT-IR spectrum of 1.