**K$_2$Ta$_4$O$_{11}$ (“Kalitantite”): wide band gap semiconductor synthesized in molybdate flux medium**

Artem A. Babaryk,*a Ievgen V. Odynets,*a Sergei Khainakov, b,c Nikolay S. Slobodyanik, a Santiago Garcia-Granda,b

*a Faculty of Chemistry, Inorganic Chemistry Department Taras Shevchenko National University of Kyiv, Kyiv, 01601 Ukraine. Fax: not available; Tel: +38 044 2393288; E-mail: babaryk@univ.kiev.ua  
b Servicios Científico Técnicos, Universidad de Oviedo, Mieres 33600, Spain, Fax: +34 985103686; Tel: +34 985458000 ext.5826; E-mail: khaynakovsergiy@uniovi.es  
c Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo – CINN, Oviedo, Spain 33006, Fax: +34 985103125 Tel: +34 985103477; E-mail: sgg@uniovi.es

Supporting Information

![Graph](image_url)

**Fig. S1.** Kubelka-Munk processed UV-Vis diffuse electron spectra (blue open circles) for K$_2$Ta$_4$O$_{11}$. The onset of absorption edge is highlighted (solid red line) by extrapolation of linear segment of experimental curve\(^1\).
Fig. S2. Isosection (0.02 e×pm\(^{-6}\)) of difference electronic map in vicinity of Ta1 (30×30 pm\(^2\)).

Supporting information S3. Calculation of Voronoi–Dirichlet polyhedra (a) and results of topological analysis (b).

A

###
2:K2 O11 Ta4

Supporting information S3. Calculation of Voronoi–Dirichlet polyhedra (a) and results of topological analysis (b).

### Central atom: Ta1 CN: 6 0.000 0.000 0.500 Rsd: 1.230

Atom 1: 1.982 < r < 1.982  <r>=1.982  Top: 1.685 < R < 1.728  <R>=1.717

CN=6  NV= 8  V= 23.594  Cpac= 0.523  Ccov= 2.774

G3=0.083363846

Vertex distribution: \{3/8\}

Atom x y z Dist. SSeg. VSeg. SAng. NV  Type
1 O  1 0.272 0.235 0.468 1.982 16.67 16.67 16.67 4 -
2 O  1 0.272  0.235 0.532 1.982 16.67 16.67 16.67 4 -
3 O  1 0.037 0.272 0.468 1.982 16.67 16.67 16.67 4 -
4 O  1  0.037 0.272 0.532 1.982 16.67 16.67 16.67 4 -
5 O  1 0.235 0.037 0.468 1.982 16.67 16.67 16.67 4 -
6 O  1 0.235 0.037 0.532 1.982 16.67 16.67 16.67 4 -

### Central atom: Ta2 CN: 7 0.333 0.300 0.417 Rsd: 1.232

D(CP):0.194  (0.3333 0.2693 0.4167)

Atom 1: 1.946 < r < 2.428  <r>=2.063  Top: 1.572 < R < 1.773  <R>=1.640

CN=7  NV=10  V=23.100  Cpac= 0.493  Ccov= 2.981

G3=0.082730807

Face distribution: \{4/5 5/2\}

Vertex distribution: \{3/10\}

Atom x y z Dist. SSeg. VSeg. SAng. NV  Type
1 O 1 0.395 0.296 0.365 1.946 17.42 16.67 17.22 5 -
2 O 1 0.272 0.235 0.468 1.946 17.42 16.67 17.22 5 -
3 O 3 0.087 0.420 0.417 2.030 15.30 15.27 15.04 4 -
4 O 3 0.580 0.667 0.417 2.030 15.30 15.27 15.04 4 -
5 O 2 0.000 0.000 0.406 2.032 13.14 13.13 13.86 4 -
6 O 2 0.667 0.333 0.427 2.032 13.14 13.13 13.86 4 -
7 O 3 0.333 0.087 0.417 2.428 8.26 9.86 7.75 4 -

B

###
2:K2 O11 Ta4

Supporting information S3. Calculation of Voronoi–Dirichlet polyhedra (a) and results of topological analysis (b).
Topology for K1

Atom K1 links by bridge ligands and has

Common vertex with R(A-A) f
Ta 2 1.0330 0.3333 0.5833 (1 0 1) 3.618A 1
Ta 2 0.6667 0.6997 0.5833 (1 1 1) 3.618A 1
Ta 2 0.3003 -0.0330 0.5833 (0 0 1) 3.618A 1

Common edge with

R(A-A)
Ta 1 1.0000 0.0000 0.5000 (1 0 0) 3.632A 2
Ta 1 1.0000 1.0000 0.5000 (1 1 0) 3.632A 2
Ta 1 0.0000 0.0000 0.5000 (0 0 0) 3.632A 2
K 1 1.3333 0.6667 0.4925 (2 1 1) 3.664A 2
K 1 0.3333 0.6667 0.4925 (1 1 1) 3.664A 2
K 1 0.3333 -0.3333 0.4925 (1 0 1) 3.664A 2
Ta 2 0.9670 0.6667 0.4167 (1 1 0) 3.898A 2
Ta 2 0.6997 0.0330 0.4167 (0 0 0) 3.898A 2
Ta 2 0.3333 0.3003 0.4167 (0 0 1) 3.898A 2

Topology for Ta1

Atom Ta1 links by bridge ligands and has

Common vertex with R(A-A) f
Ta 2 -0.0330 -0.3333 0.4167 (0 0 0) 3.663A 1
Ta 2 0.3333 0.3003 0.4167 (0 0 0) 3.663A 1
Ta 2 -0.3003 0.0330 0.4167 (0 0 0) 3.663A 1
Ta 2 0.3003 -0.3333 0.5833 (0 0 1) 3.663A 1
Ta 2 -0.3333 -0.3003 0.5833 (0 0 1) 3.663A 1

Common edge with

R(A-A)
K 1 0.6667 0.3333 0.5075 (0 0 0) 3.632A 2
K 1 0.3333 0.6667 0.4925 (-1 0 0) 3.632A 2
K 1 -0.3333 -0.6667 0.5075 (-1 -1 0) 3.632A 2
K 1 0.3333 -0.3333 0.4925 (1 0 0) 3.632A 2
K 1 0.3333 0.6667 0.4925 (1 1 0) 3.632A 2
K 1 -0.6667 -0.3333 0.4925 (0 0 1) 3.632A 2

Topology for Ta2

Atom Ta2 links by bridge ligands and has

Common vertex with R(A-A) f
K 1 0.3333 0.6667 0.3408 (0 1 -1) 3.618A 1
K 1 0.3333 0.6667 0.4925 (1 1 1) 3.618A 1
Ta 1 0.6667 0.3333 0.3333 (0 0 -1) 3.663A 1
Ta 1 0.0000 0.0000 0.5000 (0 0 0) 3.663A 1
Ta 2 -0.0330 0.6667 0.4167 (0 1 0) 3.981A 1
Ta 2 0.6997 1.0330 0.4167 (1 1 0) 3.981A 1

Common edge with

R(A-A)
Ta 2 -0.0330 -0.3333 0.4167 (0 0 0) 3.456A 2
Ta 2 -0.3003 0.0330 0.4167 (0 0 0) 3.456A 2
Ta 2 0.9670 0.6667 0.4167 (1 1 0) 3.456A 2
Ta 2 0.6997 0.0330 0.4167 (1 0 0) 3.456A 2
K 1 -0.0000 -0.0000 0.3258 (-1 -1 0) 3.898A 2
K 1 0.6667 0.3333 0.5075 (0 0 0) 3.898A 2

-------------------

Structural group analysis

-------------------

Structural group No 1

Structure consists of 3D framework with Ta4K2O11

Coordination sequences

-------------------

K1:  1 2 3 4 5 6 7 8 9 10
Num 12 44 96 170 264 380 516 674 852 1052
Cum 13 57 153 323 587 967 1483 2157 3009 4061
Ta1:  1 2 3 4 5 6 7 8 9 10
Num 12 44 96 170 264 380 516 674 852 1052
Cum 13 57 153 323 587 967 1483 2157 3009 4061
Ta2:  1 2 3 4 5 6 7 8 9 10
Num 12 44 96 170 264 380 516 674 852 1050
Cum 13 55 151 321 585 963 1479 2153 3005 4055

TD10=4058

Vertex symbols for selected sublattice

-------------------

Electronic Supplementary Material (ESI) for CrystEngComm
This journal is © The Royal Society of Chemistry 2013
K1 Point symbol: \{3^24.4^36.5^6\}
Extended point symbol: [3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).5(4).5(4).5(4).5(4).5(4).5(4)]]

Ta1 Point symbol: \{3^24.4^36.5^6\}
Extended point symbol: [3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).4(3).5(4).5(4).5(4).5(4).5(4).5(4)]

Ta2 Point symbol: \{3^24.4^33.5^9\}
Extended point symbol: [3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).5(4).5(4).5(4).5(7).5(7).5(7).5(7).5(7).5(7)]

Point symbol for net: \{3^24.4^33.5^9\}\{3^24.4^36.5^6\} 
12.12-c net with stoichiometry (12-c)/(12-c); 2-nodal net

Topological type: tcj/hc (topos&RCSR.ttd) \{3^24.4^33.5^9\}\{3^24.4^36.5^6\} - VS
\[
\begin{array}{c}
3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).4(2).5(4).5(4).5(4).5(7).5(7).5(7).5(7).5(7).5(7)
\end{array}
\]

(63707 types in 10 databases)

---

**Fig. S3.** Coordination polyhedron of K1 is view in the best projection.
Fig. S4. Visualization of calculated vibrational modes (trigonal cell setting was adopted to facilitate calculations, tantalum atoms are light blue, oxygens are red, potassium atoms are violet. Directions of displacement are shown by green arrows. Numbers in parentheses are calculated wavenumbers).

<table>
<thead>
<tr>
<th>Mode</th>
<th>Wavenumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_u$</td>
<td>417</td>
</tr>
<tr>
<td>$E_u$</td>
<td>429</td>
</tr>
<tr>
<td>$A_{2u}$</td>
<td>440</td>
</tr>
<tr>
<td>$E_u$</td>
<td>486</td>
</tr>
<tr>
<td>$A_{2u}$</td>
<td>574</td>
</tr>
<tr>
<td>$E_u$</td>
<td>588</td>
</tr>
</tbody>
</table>
Figure S4. (Continue).