Supporting Information

Crystal engineering of salen type cerium complexes induced by various cerium counterions

Bo Gao, Qian Zhang, Pengfei Yan,* Guangfeng Hou, Guangming Li*

Index

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>IR spectra of H$_2$L and complexes 1–5.</td>
</tr>
<tr>
<td>S2</td>
<td>UV-vis absorption spectra of H$_2$L and complexes 1–5 in CH$_3$OH.</td>
</tr>
<tr>
<td>S3–S7</td>
<td>The powder X-ray diffraction patterns and the simulated patterns of complexes 1–5.</td>
</tr>
<tr>
<td>S8–S12</td>
<td>TG-DSC curves for complexes 1–5.</td>
</tr>
</tbody>
</table>

Fig. S1 IR spectra of H$_2$L and complexes 1–5.

Fig. S2 UV-vis absorption spectra of H$_2$L and complexes 1–5 in CH$_3$OH.
Fig. S3 The powder X-ray diffraction patterns and the simulated patterns of complex 1.

Fig. S4 The powder X-ray diffraction patterns and the simulated patterns of complex 2.

Fig. S5 The powder X-ray diffraction patterns and the simulated patterns of complex 3.
Fig. S6 The powder X-ray diffraction patterns and the simulated patterns of complex 4.

Fig. S7 The powder X-ray diffraction patterns and the simulated patterns of complex 5.

Fig. S8 TG-DSC curve for the complex 1.
Fig. S9 TG-DSC curve for the complex 2.

Fig. S10 TG-DSC curve for the complex 3.

Fig. S11 TG-DSC curve for the complex 4.

Fig. S12 TG-DSC curve for the complex 5.
Fig. S13 CV curve of complex 3 in CH$_3$CN solution at 298K with 0.1 M n-Bu$_4$NPF$_6$ as supporting electrolyte (scan rate, 20 mV/s; working electrode, glassy carbon).

Fig. S14 CV curve of complex 4 in CH$_3$CN solution at 298K with 0.1 M n-Bu$_4$NPF$_6$ as supporting electrolyte (scan rate, 20 mV/s; working electrode, glassy carbon).

Fig. S15 CV curve of complex 5 in CH$_3$CN solution at 298K with 0.1 M n-Bu$_4$NPF$_6$ as supporting electrolyte (scan rate, 20 mV/s; working electrode, glassy carbon).