Microwave assisted synthesis of caffeine/maleic acid co-crystals: the role of the dielectric and physicochemical properties of the solvent

Sudhir Pagire, Sachin Korde, Rohan Ambardekar, Shivprasad Deshmukh, Radha Charan Dash, Ravindra Dhumal and Anant Paradkar*

Centre for Pharmaceutical Engineering Science, University of Bradford, Richmond road, Bradford, UK BD7 1DP.
E-mail: a.paradkar1@bradford.ac.uk

Supporting Information

Table of Content

SL1 PXRD of solvent free batches.
SL2 PXRD of solvent mediated batches of 1:1 caf/ma mixture with 2% solvent addition
SL3 PXRD of solvent mediated batches of 1:1 caf/ma mixture with 4% solvent addition
SL4 PXRD of solvent mediated batches of 1:1 caf/ma mixture with 10% solvent addition
SL5 PXRD of solvent mediated batches of 2:1 caf/ma mixture with 2% solvent addition at 80 °C
SL6 PXRD of solvent mediated batches of 2:1 caf/ma mixture with 4% solvent addition
SL7 PXRD of solvent mediated batches of 2:1 caf/ma mixture with 10% addition of methanol
SL8 PXRD pattern of untreated samples and solution crystallisation
SL9 PXRD pattern of caffeine and maleic acid
SL10 Microwave power uptake profiles for pure solvent
SL11 Dipole moment of caffeine and maleic acid
SI.1 PXRD of solvent free batches:

Fig.1 PXRD pattern of solvent free trials processed at (a) 80 °C with 90 sec hold time, (b) 80 °C with 60 sec hold time, (c) 80 °C with 30 sec hold time, (d) 100 °C with 2 min hold time and (e) 100 °C with 5 min hold time.

SI.2 PXRD of solvent mediated batches of 1:1 caf/ma mixture with 2% solvent addition at 80 °C

Fig.2 PXRD pattern of solvent mediated batches of 1:1 caf/ma mixture with 2% solvent addition (a) Toluene, (b) Ethyl acetate, (c) Acetone, (d) Methanol and (e) Water.
SI.3 PXRD of solvent mediated batches of 1:1 caf/ma mixture with 4% solvent addition

Fig. 3 PXRD pattern of solvent mediated batches of 1:1 caf/ma mixture with 4% solvent addition (a) Toluene, (b) Ethyl acetate and (c) Water.

SI.4 PXRD of solvent mediated batches of 1:1 caf/ma mixture with 10% solvent addition

Fig. 4 PXRD pattern of solvent mediated batches of 1:1 caf/ma mixture with 10% solvent addition (a) Toluene and (b) Acetone.
SI.5 PXRD of solvent mediated batches of 2:1 caf/ma mixture with 2% solvent addition at 80 °C

![Figure 5](image1.png)

Fig.5 PXRD pattern of solvent mediated batches of 2:1 caf/ma mixture with 2% solvent addition
(a) Toluene, (b) Ethyl acetate, (c) Acetone, (d) Methanol and (e) Water.

SI.6 PXRD of solvent mediated batches of 2:1 caf/ma mixture with 4% solvent addition

![Figure 6](image2.png)

Fig.6 PXRD pattern of solvent mediated batches of 2:1 caf/ma mixture with 4% solvent addition
(a) Toluene, (b) Ethyl acetate, (c) Acetone and (d) Water.
SI.7 PXRD of solvent mediated batches of 2:1 caf/ma mixture with 10% addition of methanol at 80 °C

![Fig. 7 PXRD pattern of caf/ma 2:1 physical mixture after addition of 10% Methanol and heated to 80 °C under microwave.](image)

SI.8 PXRD pattern of untreated samples and solution crystallisation

![Fig. 8 PXRD pattern of (a) caf/ma 1:1 mixture with 10% of water without microwave treatment, (b) crystallisation of 1:1 caf/ma mixture from water, solution crystallisation.](image)
SL.9 PXRD pattern of caffeine and maleic acid

Fig. 9 PXRD pattern of caffeine (a) and (b) maleic acid

SL.10 Microwave power uptake profiles for pure solvent

Fig. 10 Temperature and power uptake curves for water, methanol, acetone and toluene.
SL.11 Highest occupied molecular orbital (HOMO) and Lowest unoccupied molecular orbital (LUMO) with Dipole moment of caffeine and maleic acid

Caffeine

T.E. = -0.07863776 au
RMS gradient Norm = 0.00000459 au
Dipole = 3.9131 Debye in x=-3.8968, y= 0.1824, z= 0.3067
Positive = red, Negative = green, iso value=0.02

Maleic acid

T.E. = -0.25871448 au
RMS gradient Norm = 0.00000567 au
Dipole = 4.5825 Debye in x=-3.3878, y= -3.0858, z= 0.0020
Positive = red, Negative = green, iso value=0.02