Supplementary Information

Interweaving of two enantiomorphic 3D heterometallic coordination polymers with homochiral unequal triple concentric helical chains

Yuecheng Liu, a,b Huabin Zhang, a,b Chongbin Tian, a,b Ping Lin, a and Shaowu Du a*

a State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. E-mail: swdu@fjirsm.ac.cn.
Fax: 86-591-83709470

b Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China

1. Experimental procedures

1.1 Materials and Instruments.

All the chemicals were purchased commercially and used as received. Thermogravimetric analysis-mass spectrometry analysis (TGA-MS) experiments were performed using a TGA/NETZSCH STA449C instrument heated from 30–800 °C (heating rate of 10 °C /min, nitrogen stream). The powder X-ray diffraction (XRD) patterns were recorded on crushed single crystals in the 2θ range 5–50° using Cu-Kα radiation. The XRD were measured on a PAN alytical X’pert PRO X-Ray Diffractometer. IR spectra using the KBr pellet technique were recorded on a Spectrum-One FT-IR spectrophotometer. Elemental analyses (C, H, and N) were measured with an Elemental Vairo EL III Analyzer. Fluorescence spectra for the solid samples were performed on an Edinburgh Analytical instrument FLS920. The NLO properties of 1D and 1L were tested on the powder samples by the Kurtz and Perry method using an Nd:YAG laser (1064 nm) with an input pulse of 350 mV.
1.2 Synthesis of [Cd₃K₃(D-HAPA)₃(m-BDC)₆(EtOH)₃]ₙ (1D) and [Cd₃K₃(L-HAPA)₃(m-BDC)₆(EtOH)₃]ₙ (1L). A mixture of Cd(NO₃)₂·4H₂O, (0.0925 g, 0.3 mmol), KNO₃ (0.5055 g, 0.5 mmol), m-H₂BDC (0.1661 g, 1.0 mmol) and D-Alaninol (0.156 mL, 2.0 mmol) in CH₃CH₂OH (10 mL) was stirred at room temperature for a few minutes. The resulting slurry was transferred into a 20 mL of Teflon-lined stainless steel vessel, which was heated at 130 °C for 12 hrs and then cooled to room temperature in two days. Colorless prism crystals of 1D were collected (yield 70%, based on Cd). Elemental Anal. Calcd. for Cd₃K₃C₆₃H₇₂N₃O₃₀ (1D): C, 41.90; H, 4.02; N, 2.33; found: C, 41.62; H, 3.79; N, 2.57. IR (KBr, cm⁻¹): 1607s, 1558s, 1478w, 1436m, 1043w, 914w, 657vw (Fig. S10).

Complex 1L was prepared in a manner similar to that for 1D except that L-Alaninol was used instead of D-Alaninol (yield 64%, based on Cd). Elemental Anal. Calcd. for Cd₃K₃C₆₃H₇₂N₃O₃₀ (1L): C, 41.90; H, 4.02; N, 2.33; found: C, 41.79; H, 3.75; N, 2.41. IR (KBr, cm⁻¹): 1607s, 1558s, 1478w, 1436m, 1043w, 829w, 657vw (Fig. S10).

1.3 X-ray Crystallography.

Single-crystal X-ray diffraction data were collected on a Rigaku diffractometer with a Mercury CCD area detector (Mo Kα; λ = 0.71073 Å) at room temperature. Empirical absorption corrections were applied to the data using the Crystal Clear program. The structures were solved by the direct method and refined by the full-matrix least-squares on F² using the SHELXTL-97 program. Metal atoms in each compound were located from the E-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses. All non-hydrogen atoms were refined anisotropically. Crystallographic data and other pertinent information are summarized in Table S1.

Reference

3. G. M. Sheldrick, SHELXS 97, Program for Crystal Structure Solution; University of Göttingen: Göttingen, Germany.
<table>
<thead>
<tr>
<th>Compound</th>
<th>1D</th>
<th>1L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>C${63}$H${72}$Cd$_3$K$_3$N3O${30}$</td>
<td>C${63}$H${72}$Cd$_3$K$_3$N3O${30}$</td>
</tr>
<tr>
<td>Formula mass</td>
<td>1805.74</td>
<td>1805.74</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Hexagonal</td>
<td>Hexagonal</td>
</tr>
<tr>
<td>Space group</td>
<td>$P6_5$</td>
<td>$P6_1$</td>
</tr>
<tr>
<td>a (Å)</td>
<td>20.5909(4)</td>
<td>20.609(3)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>20.5909(4)</td>
<td>20.609(3)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>28.3082(9)</td>
<td>28.314(4)</td>
</tr>
<tr>
<td>α (°)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β (°)</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>γ (°)</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>V (Å3)</td>
<td>10394.3(4)</td>
<td>10414(2)</td>
</tr>
<tr>
<td>Z</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>μ (mm$^{-1}$)</td>
<td>1.183</td>
<td>1.181</td>
</tr>
<tr>
<td>D_{calc} (g/cm3)</td>
<td>1.731</td>
<td>1.728</td>
</tr>
<tr>
<td>$F(000)$</td>
<td>5472</td>
<td>5472</td>
</tr>
<tr>
<td>R_{int}</td>
<td>0.0263</td>
<td>0.0412</td>
</tr>
<tr>
<td>R_1 $^a [I > 2σ(I)]$</td>
<td>0.0308</td>
<td>0.0704</td>
</tr>
<tr>
<td>wR_2 $^b [I > 2σ(I)]$</td>
<td>0.0734</td>
<td>0.1639</td>
</tr>
<tr>
<td>GOF on F^2</td>
<td>1.072</td>
<td>1.106</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>$-0.016(14)$</td>
<td>0.09(3)</td>
</tr>
</tbody>
</table>

$^a R_1 = \sum |F_o| - |F_c| / \sum |F_o|, \quad ^b wR_2 = \left[\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2 \right]^{0.5}$
Table S2 Bond lengths (Å) and angles (°) for complexes 1D and 1L

<table>
<thead>
<tr>
<th></th>
<th>1D</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(1)−O(1A)</td>
<td>2.701(3)</td>
<td>Cd(3)−O(21)</td>
<td>2.494(3)</td>
</tr>
<tr>
<td>Cd(1)−O(2A)</td>
<td>2.283(2)</td>
<td>Cd(3)−O(22)</td>
<td>2.358(3)</td>
</tr>
<tr>
<td>Cd(1)−O(3)</td>
<td>2.309(3)</td>
<td>K(1)−O(7)</td>
<td>2.833(3)</td>
</tr>
<tr>
<td>Cd(1)−O(4)</td>
<td>2.517(2)</td>
<td>K(1)−O(9)</td>
<td>2.713(3)</td>
</tr>
<tr>
<td>Cd(1)−O(7)</td>
<td>2.751(3)</td>
<td>K(1)−O(15F)</td>
<td>3.255(3)</td>
</tr>
<tr>
<td>Cd(1)−O(8)</td>
<td>2.285(2)</td>
<td>K(1)−O(18F)</td>
<td>2.710(3)</td>
</tr>
<tr>
<td>Cd(1)−O(9)</td>
<td>2.305(3)</td>
<td>K(1)−O(21F)</td>
<td>2.718(3)</td>
</tr>
<tr>
<td>Cd(1)−O(10)</td>
<td>2.526(3)</td>
<td>K(1)−O(25)</td>
<td>2.831(4)</td>
</tr>
<tr>
<td>Cd(2)−O(5C)</td>
<td>2.337(3)</td>
<td>K(1)−O(26)</td>
<td>2.958(3)</td>
</tr>
<tr>
<td>Cd(2)−O(6C)</td>
<td>2.459(3)</td>
<td>K(2)−O(11B)</td>
<td>2.689(3)</td>
</tr>
<tr>
<td>Cd(2)−O(11)</td>
<td>2.761(4)</td>
<td>K(2)−O(13D)</td>
<td>3.037(3)</td>
</tr>
<tr>
<td>Cd(2)−O(12)</td>
<td>2.309(3)</td>
<td>K(2)−O(23B)</td>
<td>2.634(3)</td>
</tr>
<tr>
<td>Cd(2)−O(13D)</td>
<td>2.511(3)</td>
<td>K(2)−O(24)</td>
<td>2.611(3)</td>
</tr>
<tr>
<td>Cd(2)−O(14D)</td>
<td>2.337(3)</td>
<td>K(2)−O(27)</td>
<td>2.787(4)</td>
</tr>
<tr>
<td>Cd(2)−O(23)</td>
<td>2.432(3)</td>
<td>K(2)−O(28)</td>
<td>2.914(3)</td>
</tr>
<tr>
<td>Cd(2)−O(24)</td>
<td>2.354(3)</td>
<td>K(3)−O(1D)</td>
<td>2.786(3)</td>
</tr>
<tr>
<td>Cd(3)−O(15)</td>
<td>2.401(2)</td>
<td>K(3)−O(3E)</td>
<td>2.662(3)</td>
</tr>
<tr>
<td>Cd(3)−O(16)</td>
<td>2.395(3)</td>
<td>K(3)−O(16)</td>
<td>2.730(3)</td>
</tr>
<tr>
<td>Cd(3)−O(17)</td>
<td>2.436(2)</td>
<td>K(3)−O(17)</td>
<td>3.035(3)</td>
</tr>
<tr>
<td>Cd(3)−O(18)</td>
<td>2.374(3)</td>
<td>K(3)−O(19B)</td>
<td>2.746(3)</td>
</tr>
<tr>
<td>Cd(3)−O(19B)</td>
<td>2.510(3)</td>
<td>K(3)−O(29)</td>
<td>2.809(5)</td>
</tr>
<tr>
<td>Cd(3)−O(20B)</td>
<td>2.363(3)</td>
<td>K(3)−O(30)</td>
<td>3.026(4)</td>
</tr>
<tr>
<td>O(1A)−Cd(1)−O(7)</td>
<td>108.43(8)</td>
<td>O(20B)−Cd(3)−O(15)</td>
<td>86.56(9)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(1A)</td>
<td>51.78(9)</td>
<td>O(20B)−Cd(3)−O(16)</td>
<td>93.80(10)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(3)</td>
<td>137.25(9)</td>
<td>O(20B)−Cd(3)−O(17)</td>
<td>139.93(9)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(4)</td>
<td>161.13(9)</td>
<td>O(20B)−Cd(3)−O(18)</td>
<td>165.00(9)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(7)</td>
<td>74.61(9)</td>
<td>O(20B)−Cd(3)−O(19B)</td>
<td>53.43(9)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(8)</td>
<td>82.02(9)</td>
<td>O(20B)−Cd(3)−O(21)</td>
<td>86.73(9)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(9)</td>
<td>96.23(9)</td>
<td>O(20B)−Cd(3)−O(22)</td>
<td>87.65(10)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(10)</td>
<td>79.47(9)</td>
<td>O(22)−Cd(3)−O(15)</td>
<td>141.11(9)</td>
</tr>
<tr>
<td>O(3)−Cd(1)−O(1A)</td>
<td>86.30(9)</td>
<td>O(22)−Cd(3)−O(16)</td>
<td>164.28(9)</td>
</tr>
<tr>
<td>O(3)−Cd(1)−O(4)</td>
<td>54.11(8)</td>
<td>O(22)−Cd(3)−O(17)</td>
<td>84.74(10)</td>
</tr>
<tr>
<td>O(3)−Cd(1)−O(7)</td>
<td>135.70(9)</td>
<td>O(22)−Cd(3)−O(18)</td>
<td>91.42(10)</td>
</tr>
<tr>
<td>O(3)−Cd(1)−O(10)</td>
<td>90.67(9)</td>
<td>O(22)−Cd(3)−O(19B)</td>
<td>87.16(10)</td>
</tr>
<tr>
<td>O(4)−Cd(1)−O(1A)</td>
<td>131.04(9)</td>
<td>O(22)−Cd(3)−O(21)</td>
<td>53.92(9)</td>
</tr>
<tr>
<td>O(4)−Cd(1)−O(7)</td>
<td>87.95(8)</td>
<td>O(7)−K(1)−O(15F)</td>
<td>95.94(8)</td>
</tr>
<tr>
<td>O(4)−Cd(1)−O(10)</td>
<td>118.27(9)</td>
<td>O(7)−K(1)−O(26)</td>
<td>82.63(9)</td>
</tr>
<tr>
<td>O(8)−Cd(1)−O(1A)</td>
<td>75.41(10)</td>
<td>O(9)−K(1)−O(7)</td>
<td>79.12(9)</td>
</tr>
<tr>
<td>O(8)−Cd(1)−O(3)</td>
<td>96.56(10)</td>
<td>O(9)−K(1)−O(15F)</td>
<td>70.35(7)</td>
</tr>
<tr>
<td>O(8)−Cd(1)−O(4)</td>
<td>81.38(9)</td>
<td>O(9)−K(1)−O(21F)</td>
<td>136.59(9)</td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
<td>Bond</td>
<td>Length (Å)</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>O(8)–Cd(1)–O(7)</td>
<td>51.03(9)</td>
<td>O(9)–K(1)–O(25)</td>
<td>138.40(10)</td>
</tr>
<tr>
<td>O(8)–Cd(1)–O(10)</td>
<td>159.20(10)</td>
<td>O(9)–K(1)–O(26)</td>
<td>74.87(8)</td>
</tr>
<tr>
<td>O(8)–Cd(1)–O(9)</td>
<td>138.39(10)</td>
<td>O(18F)–K(1)–O(7)</td>
<td>157.81(8)</td>
</tr>
<tr>
<td>O(9)–Cd(1)–O(1A)</td>
<td>134.49(9)</td>
<td>O(18F)–K(1)–O(9)</td>
<td>102.32(9)</td>
</tr>
<tr>
<td>O(9)–Cd(1)–O(3)</td>
<td>111.21(10)</td>
<td>O(18F)–K(1)–O(15F)</td>
<td>64.57(7)</td>
</tr>
<tr>
<td>O(9)–Cd(1)–O(4)</td>
<td>90.27(9)</td>
<td>O(18F)–K(1)–O(21F)</td>
<td>70.99(9)</td>
</tr>
<tr>
<td>O(9)–Cd(1)–O(7)</td>
<td>88.21(9)</td>
<td>O(21F)–K(1)–O(25)</td>
<td>83.17(9)</td>
</tr>
<tr>
<td>O(9)–Cd(1)–O(10)</td>
<td>53.88(9)</td>
<td>O(21F)–K(1)–O(26)</td>
<td>119.31(9)</td>
</tr>
<tr>
<td>O(10)–Cd(1)–O(1A)</td>
<td>85.68(9)</td>
<td>O(21F)–K(1)–O(7)</td>
<td>92.55(9)</td>
</tr>
<tr>
<td>O(10)–Cd(1)–O(7)</td>
<td>130.86(9)</td>
<td>O(21F)–K(1)–O(15F)</td>
<td>68.28(8)</td>
</tr>
<tr>
<td>O(5C)–Cd(2)–O(6C)</td>
<td>54.76(8)</td>
<td>O(21F)–K(1)–O(25)</td>
<td>84.51(10)</td>
</tr>
<tr>
<td>O(5C)–Cd(2)–O(11)</td>
<td>85.68(9)</td>
<td>O(21F)–K(1)–O(26)</td>
<td>146.80(9)</td>
</tr>
<tr>
<td>O(5C)–Cd(2)–O(13D)</td>
<td>127.72(10)</td>
<td>O(25)–K(1)–O(7)</td>
<td>110.70(9)</td>
</tr>
<tr>
<td>O(5C)–Cd(2)–O(23)</td>
<td>88.47(9)</td>
<td>O(25)–K(1)–O(15F)</td>
<td>142.77(8)</td>
</tr>
<tr>
<td>O(5C)–Cd(2)–O(24)</td>
<td>117.47(10)</td>
<td>O(25)–K(1)–O(26)</td>
<td>66.96(10)</td>
</tr>
<tr>
<td>O(6C)–Cd(2)–O(11)</td>
<td>139.27(9)</td>
<td>O(26)–K(1)–O(15F)</td>
<td>144.78(8)</td>
</tr>
<tr>
<td>O(6C)–Cd(2)–O(13D)</td>
<td>86.07(10)</td>
<td>O(11B)–K(2)–O(13D)</td>
<td>86.68(10)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(5C)</td>
<td>135.75(10)</td>
<td>O(11B)–K(2)–O(27)</td>
<td>86.18(12)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(6C)</td>
<td>165.99(10)</td>
<td>O(11B)–K(2)–O(28)</td>
<td>150.14(11)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(11)</td>
<td>50.11(10)</td>
<td>O(23B)–K(2)–O(11B)</td>
<td>77.36(10)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(13D)</td>
<td>79.92(11)</td>
<td>O(23B)–K(2)–O(13D)</td>
<td>154.15(10)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(14D)</td>
<td>84.19(11)</td>
<td>O(23B)–K(2)–O(27)</td>
<td>79.88(10)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(23)</td>
<td>85.15(11)</td>
<td>O(23B)–K(2)–O(28)</td>
<td>114.08(10)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(24)</td>
<td>93.41(10)</td>
<td>O(24)–K(2)–O(11B)</td>
<td>125.15(10)</td>
</tr>
<tr>
<td>O(13D)–Cd(2)–O(11)</td>
<td>116.48(9)</td>
<td>O(24)–K(2)–O(13D)</td>
<td>74.03(9)</td>
</tr>
<tr>
<td>O(14D)–Cd(2)–O(5C)</td>
<td>87.71(10)</td>
<td>O(24)–K(2)–O(23B)</td>
<td>98.63(10)</td>
</tr>
<tr>
<td>O(14D)–Cd(2)–O(6C)</td>
<td>87.45(10)</td>
<td>O(24)–K(2)–O(27)</td>
<td>147.85(12)</td>
</tr>
<tr>
<td>O(14D)–Cd(2)–O(11)</td>
<td>81.07(10)</td>
<td>O(24)–K(2)–O(28)</td>
<td>81.87(9)</td>
</tr>
<tr>
<td>O(14D)–Cd(2)–O(13D)</td>
<td>54.01(10)</td>
<td>O(27)–K(2)–O(13D)</td>
<td>119.61(10)</td>
</tr>
<tr>
<td>O(14D)–Cd(2)–O(24)</td>
<td>143.04(10)</td>
<td>O(27)–K(2)–O(28)</td>
<td>69.94(11)</td>
</tr>
<tr>
<td>O(14D)–Cd(2)–O(23)</td>
<td>160.34(10)</td>
<td>O(28)–K(2)–O(13D)</td>
<td>89.79(9)</td>
</tr>
<tr>
<td>O(23)–Cd(2)–O(6C)</td>
<td>105.93(10)</td>
<td>O(1D)–K(3)–O(17)</td>
<td>97.40(8)</td>
</tr>
<tr>
<td>O(23)–Cd(2)–O(11)</td>
<td>79.42(10)</td>
<td>O(1D)–K(3)–O(29)</td>
<td>111.39(11)</td>
</tr>
<tr>
<td>O(23)–Cd(2)–O(13D)</td>
<td>139.43(10)</td>
<td>O(1D)–K(3)–O(30)</td>
<td>78.75(9)</td>
</tr>
<tr>
<td>O(24)–Cd(2)–O(6C)</td>
<td>86.54(10)</td>
<td>O(3E)–K(3)–O(1D)</td>
<td>78.22(9)</td>
</tr>
<tr>
<td>O(24)–Cd(2)–O(11)</td>
<td>124.63(10)</td>
<td>O(3E)–K(3)–O(16)</td>
<td>105.22(9)</td>
</tr>
<tr>
<td>O(24)–Cd(2)–O(13D)</td>
<td>89.20(10)</td>
<td>O(3E)–K(3)–O(17)</td>
<td>72.10(8)</td>
</tr>
<tr>
<td>O(24)–Cd(2)–O(23)</td>
<td>54.13(9)</td>
<td>O(3E)–K(3)–O(19B)</td>
<td>142.12(9)</td>
</tr>
<tr>
<td>O(15)–Cd(3)–O(17)</td>
<td>122.31(8)</td>
<td>O(3E)–K(3)–O(29)</td>
<td>132.54(14)</td>
</tr>
<tr>
<td>O(15)–Cd(3)–O(19B)</td>
<td>118.83(9)</td>
<td>O(3E)–K(3)–O(30)</td>
<td>73.77(9)</td>
</tr>
<tr>
<td>O(15)–Cd(3)–O(21)</td>
<td>87.36(9)</td>
<td>O(16)–K(3)–O(1D)</td>
<td>162.36(9)</td>
</tr>
<tr>
<td>O(16)–Cd(3)–O(15)</td>
<td>54.60(8)</td>
<td>O(16)–K(3)–O(17)</td>
<td>68.05(8)</td>
</tr>
<tr>
<td>O(16)–Cd(3)–O(17)</td>
<td>84.10(9)</td>
<td>O(16)–K(3)–O(19B)</td>
<td>71.34(9)</td>
</tr>
<tr>
<td>O(16)–Cd(3)–O(19B)</td>
<td>81.20(10)</td>
<td>O(16)–K(3)–O(29)</td>
<td>79.40(11)</td>
</tr>
</tbody>
</table>
Electronic Supplementary Material (ESI) for CrystEngComm
This journal is © The Royal Society of Chemistry 2013

O(16)−Cd(3)−O(21) 141.77(9) O(16)−K(3)−O(30) 118.89(9)
O(17)−Cd(3)−O(19B) 86.88(8) O(19B)−K(3)−O(1D) 95.14(9)
O(17)−Cd(3)−O(21) 118.79(9) O(19B)−K(3)−O(17) 71.89(8)
O(18)−Cd(3)−O(15) 84.79(9) O(19B)−K(3)−O(29) 84.82(4)
O(18)−Cd(3)−O(16) 91.14(10) O(19B)−K(3)−O(30) 142.12(10)
O(18)−Cd(3)−O(17) 54.71(8) O(29)−K(3)−O(17) 144.48(10)
O(18)−Cd(3)−O(19B) 141.50(9) O(29)−K(3)−O(30) 63.73(12)
O(18)−Cd(3)−O(21) 80.67(9) O(30)−K(3)−O(17) 145.70(9)
O(19B)−Cd(3)−O(21) 126.83(8)

Symmetry transformations used to generate equivalent atoms:
A y + 1, −x + y + 1, z + 1/6, B x − y + 1, x, z − 1/6, C −x + y + 2, −x + 2, z + 1/3, D −x +
y + 1, −x + 1, z + 1/3, E y, −x + y + 1, z + 1/6, F y, −x + y, z + 1/6

<table>
<thead>
<tr>
<th>1L</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd(1)−O(1A)</td>
<td>2.694(9)</td>
<td>Cd(3)−O(21)</td>
<td>2.519(8)</td>
</tr>
<tr>
<td>Cd(1)−O(2A)</td>
<td>2.294(5)</td>
<td>Cd(3)−O(22)</td>
<td>2.356(7)</td>
</tr>
<tr>
<td>Cd(1)−O(3)</td>
<td>2.305(6)</td>
<td>K(1)−O(7)</td>
<td>2.831(6)</td>
</tr>
<tr>
<td>Cd(1)−O(4)</td>
<td>2.512(6)</td>
<td>K(1)−O(9)</td>
<td>2.712(7)</td>
</tr>
<tr>
<td>Cd(1)−O(7)</td>
<td>2.729(7)</td>
<td>K(1)−O(15F)</td>
<td>3.264(7)</td>
</tr>
<tr>
<td>Cd(1)−O(8)</td>
<td>2.269(6)</td>
<td>K(1)−O(18F)</td>
<td>2.697(7)</td>
</tr>
<tr>
<td>Cd(1)−O(9)</td>
<td>2.286(6)</td>
<td>K(1)−O(21F)</td>
<td>2.732(7)</td>
</tr>
<tr>
<td>Cd(1)−O(10)</td>
<td>2.533(7)</td>
<td>K(1)−O(25)</td>
<td>2.774(10)</td>
</tr>
<tr>
<td>Cd(2)−O(5C)</td>
<td>2.329(6)</td>
<td>K(1)−O(26)</td>
<td>2.978(8)</td>
</tr>
<tr>
<td>Cd(2)−O(6C)</td>
<td>2.462(7)</td>
<td>K(2)−O(11B)</td>
<td>2.703(9)</td>
</tr>
<tr>
<td>Cd(2)−O(11)</td>
<td>2.698(10)</td>
<td>K(2)−O(13D)</td>
<td>3.058(10)</td>
</tr>
<tr>
<td>Cd(2)−O(12)</td>
<td>2.306(7)</td>
<td>K(2)−O(23B)</td>
<td>2.631(8)</td>
</tr>
<tr>
<td>Cd(2)−O(13D)</td>
<td>2.531(9)</td>
<td>K(2)−O(24)</td>
<td>2.579(9)</td>
</tr>
<tr>
<td>Cd(2)−O(14D)</td>
<td>2.348(7)</td>
<td>K(2)−O(27)</td>
<td>2.815(11)</td>
</tr>
<tr>
<td>Cd(2)−O(23)</td>
<td>2.439(8)</td>
<td>K(2)−O(28)</td>
<td>2.905(9)</td>
</tr>
<tr>
<td>Cd(2)−O(24)</td>
<td>2.369(7)</td>
<td>K(3)−O(1D)</td>
<td>2.803(7)</td>
</tr>
<tr>
<td>Cd(3)−O(15)</td>
<td>2.398(6)</td>
<td>K(3)−O(3E)</td>
<td>2.613(9)</td>
</tr>
<tr>
<td>Cd(3)−O(16)</td>
<td>2.379(7)</td>
<td>K(3)−O(16)</td>
<td>2.748(7)</td>
</tr>
<tr>
<td>Cd(3)−O(17)</td>
<td>2.409(7)</td>
<td>K(3)−O(17)</td>
<td>3.071(7)</td>
</tr>
<tr>
<td>Cd(3)−O(18)</td>
<td>2.395(7)</td>
<td>K(3)−O(19B)</td>
<td>2.759(7)</td>
</tr>
<tr>
<td>Cd(3)−O(19B)</td>
<td>2.497(8)</td>
<td>K(3)−O(29)</td>
<td>2.815(11)</td>
</tr>
<tr>
<td>Cd(3)−O(20B)</td>
<td>2.360(6)</td>
<td>K(3)−O(30)</td>
<td>2.998(10)</td>
</tr>
<tr>
<td>O(1A)−Cd(1)−O(7)</td>
<td>109.0(2)</td>
<td>O(20B)−Cd(3)−O(15)</td>
<td>86.3(2)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(1A)</td>
<td>52.1(2)</td>
<td>O(20B)−Cd(3)−O(16)</td>
<td>92.9(3)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(3)</td>
<td>137.8(2)</td>
<td>O(20B)−Cd(3)−O(17)</td>
<td>140.9(2)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(4)</td>
<td>161.1(2)</td>
<td>O(20B)−Cd(3)−O(18)</td>
<td>164.6(2)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(7)</td>
<td>75.2(2)</td>
<td>O(20B)−Cd(3)−O(19B)</td>
<td>53.7(2)</td>
</tr>
<tr>
<td>O(2A)−Cd(1)−O(10)</td>
<td>79.6(2)</td>
<td>O(20B)−Cd(3)−O(21)</td>
<td>86.0(2)</td>
</tr>
<tr>
<td>O(3)−Cd(1)−O(1A)</td>
<td>86.4(2)</td>
<td>O(20B)−Cd(3)−O(22)</td>
<td>87.0(3)</td>
</tr>
<tr>
<td>O(3)−Cd(1)−O(4)</td>
<td>54.5(2)</td>
<td>O(22)−Cd(3)−O(15)</td>
<td>140.9(2)</td>
</tr>
<tr>
<td>O(3)−Cd(1)−O(7)</td>
<td>134.8(2)</td>
<td>O(22)−Cd(3)−O(16)</td>
<td>164.3(3)</td>
</tr>
<tr>
<td>Bond</td>
<td>Bond Angle 1</td>
<td>Bond Angle 2</td>
<td>Bond Angle 3</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>O(3)–Cd(1)–O(10)</td>
<td>90.7(3)</td>
<td>O(22)–Cd(3)–O(17)</td>
<td>85.6(3)</td>
</tr>
<tr>
<td>O(4)–Cd(1)–O(1A)</td>
<td>131.9(2)</td>
<td>O(22)–Cd(3)–O(18)</td>
<td>91.7(3)</td>
</tr>
<tr>
<td>O(4)–Cd(1)–O(7)</td>
<td>86.9(2)</td>
<td>O(22)–Cd(3)–O(19B)</td>
<td>85.7(3)</td>
</tr>
<tr>
<td>O(4)–Cd(1)–O(10)</td>
<td>117.8(2)</td>
<td>O(22)–Cd(3)–O(20B)</td>
<td>86.9(3)</td>
</tr>
<tr>
<td>O(8)–Cd(1)–O(1A)</td>
<td>75.5(3)</td>
<td>O(22)–Cd(3)–O(21)</td>
<td>54.0(2)</td>
</tr>
<tr>
<td>O(8)–Cd(1)–O(2A)</td>
<td>82.3(2)</td>
<td>O(7)–K(1)–O(15F)</td>
<td>95.64(18)</td>
</tr>
<tr>
<td>O(8)–Cd(1)–O(3)</td>
<td>96.2(3)</td>
<td>O(7)–K(1)–O(26)</td>
<td>83.6(2)</td>
</tr>
<tr>
<td>O(8)–Cd(1)–O(4)</td>
<td>81.7(2)</td>
<td>O(9)–K(1)–O(7)</td>
<td>78.2(2)</td>
</tr>
<tr>
<td>O(8)–Cd(1)–O(7)</td>
<td>51.1(2)</td>
<td>O(9)–K(1)–O(15F)</td>
<td>69.95(17)</td>
</tr>
<tr>
<td>O(8)–Cd(1)–O(9)</td>
<td>138.3(2)</td>
<td>O(9)–K(1)–O(21F)</td>
<td>135.8(2)</td>
</tr>
<tr>
<td>O(8)–Cd(1)–O(10)</td>
<td>159.4(3)</td>
<td>O(9)–K(1)–O(25)</td>
<td>139.8(3)</td>
</tr>
<tr>
<td>O(9)–Cd(1)–O(1A)</td>
<td>134.4(2)</td>
<td>O(9)–K(1)–O(26)</td>
<td>75.7(2)</td>
</tr>
<tr>
<td>O(9)–Cd(1)–O(2A)</td>
<td>95.7(2)</td>
<td>O(18F)–K(1)–O(7)</td>
<td>158.1(2)</td>
</tr>
<tr>
<td>O(9)–Cd(1)–O(3)</td>
<td>111.4(3)</td>
<td>O(18F)–K(1)–O(9)</td>
<td>102.7(2)</td>
</tr>
<tr>
<td>O(9)–Cd(1)–O(4)</td>
<td>89.5(2)</td>
<td>O(18F)–K(1)–O(15F)</td>
<td>64.99(18)</td>
</tr>
<tr>
<td>O(9)–Cd(1)–O(7)</td>
<td>87.9(2)</td>
<td>O(18F)–K(1)–O(21F)</td>
<td>71.7(2)</td>
</tr>
<tr>
<td>O(9)–Cd(1)–O(10)</td>
<td>54.5(2)</td>
<td>O(18F)–K(1)–O(25)</td>
<td>82.4(2)</td>
</tr>
<tr>
<td>O(10)–Cd(1)–O(1A)</td>
<td>85.6(2)</td>
<td>O(18F)–K(1)–O(26)</td>
<td>118.0(2)</td>
</tr>
<tr>
<td>O(10)–Cd(1)–O(7)</td>
<td>131.5(2)</td>
<td>O(21F)–K(1)–O(7)</td>
<td>92.2(2)</td>
</tr>
<tr>
<td>O(5C)–Cd(2)–O(6C)</td>
<td>55.3(2)</td>
<td>O(21F)–K(1)–O(15F)</td>
<td>68.21(19)</td>
</tr>
<tr>
<td>O(5C)–Cd(2)–O(11)</td>
<td>85.8(3)</td>
<td>O(21F)–K(1)–O(25)</td>
<td>84.0(3)</td>
</tr>
<tr>
<td>O(5C)–Cd(2)–O(13D)</td>
<td>128.2(3)</td>
<td>O(21F)–K(1)–O(26)</td>
<td>146.8(2)</td>
</tr>
<tr>
<td>O(5C)–Cd(2)–O(14D)</td>
<td>87.9(3)</td>
<td>O(25)–K(1)–O(7)</td>
<td>111.3(2)</td>
</tr>
<tr>
<td>O(5C)–Cd(2)–O(23)</td>
<td>88.6(3)</td>
<td>O(25)–K(1)–O(15F)</td>
<td>142.0(2)</td>
</tr>
<tr>
<td>O(5C)–Cd(2)–O(24)</td>
<td>117.4(3)</td>
<td>O(25)–K(1)–O(26)</td>
<td>67.2(2)</td>
</tr>
<tr>
<td>O(6C)–Cd(2)–O(11)</td>
<td>139.9(2)</td>
<td>O(26)–K(1)–O(15F)</td>
<td>145.0(2)</td>
</tr>
<tr>
<td>O(6C)–Cd(2)–O(13D)</td>
<td>86.1(3)</td>
<td>O(11B)–K(2)–O(13D)</td>
<td>86.9(3)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(5C)</td>
<td>136.0(3)</td>
<td>O(11B)–K(2)–O(27)</td>
<td>86.5(4)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(6C)</td>
<td>166.0(3)</td>
<td>O(11B)–K(2)–O(28)</td>
<td>150.7(3)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(11)</td>
<td>50.2(3)</td>
<td>O(23B)–K(2)–O(11B)</td>
<td>77.1(3)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(13D)</td>
<td>80.0(3)</td>
<td>O(23B)–K(2)–O(13D)</td>
<td>156.1(3)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(14D)</td>
<td>84.8(3)</td>
<td>O(23B)–K(2)–O(27)</td>
<td>79.5(3)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(23)</td>
<td>84.9(3)</td>
<td>O(23B)–K(2)–O(28)</td>
<td>113.4(3)</td>
</tr>
<tr>
<td>O(12)–Cd(2)–O(24)</td>
<td>92.4(3)</td>
<td>O(24)–K(2)–O(11B)</td>
<td>127.1(3)</td>
</tr>
<tr>
<td>O(13D)–Cd(2)–O(11)</td>
<td>116.3(3)</td>
<td>O(24)–K(2)–O(13D)</td>
<td>74.8(2)</td>
</tr>
<tr>
<td>O(14D)–Cd(2)–O(6C)</td>
<td>87.8(2)</td>
<td>O(24)–K(2)–O(23B)</td>
<td>100.7(3)</td>
</tr>
<tr>
<td>O(14D)–Cd(2)–O(11)</td>
<td>80.9(3)</td>
<td>O(24)–K(2)–O(27)</td>
<td>145.9(3)</td>
</tr>
<tr>
<td>O(14D)–Cd(2)–O(13D)</td>
<td>54.3(3)</td>
<td>O(24)–K(2)–O(28)</td>
<td>79.4(2)</td>
</tr>
<tr>
<td>O(14D)–Cd(2)–O(23)</td>
<td>161.2(3)</td>
<td>O(27)–K(2)–O(13D)</td>
<td>117.5(3)</td>
</tr>
<tr>
<td>O(14D)–Cd(2)–O(24)</td>
<td>143.4(3)</td>
<td>O(27)–K(2)–O(28)</td>
<td>69.7(3)</td>
</tr>
<tr>
<td>O(23)–Cd(2)–O(6C)</td>
<td>105.2(3)</td>
<td>O(28)–K(2)–O(13D)</td>
<td>89.1(2)</td>
</tr>
<tr>
<td>O(23)–Cd(2)–O(11)</td>
<td>80.4(3)</td>
<td>O(1D)–K(3)–O(17)</td>
<td>97.0(2)</td>
</tr>
<tr>
<td>O(23)–Cd(2)–O(13D)</td>
<td>138.5(3)</td>
<td>O(1D)–K(3)–O(29)</td>
<td>112.2(3)</td>
</tr>
<tr>
<td>O(24)–Cd(2)–O(6C)</td>
<td>86.5(2)</td>
<td>O(1D)–K(3)–O(30)</td>
<td>80.3(2)</td>
</tr>
</tbody>
</table>
Coordination environment for the metal ions in 1L. Hydrogen atoms and the labels of carbon atoms are omitted for clarity. (Symmetry code: A y − 1, −x + y − 1, z − 1/6, B x − y + 1, x + 1, z + 1/6, C −x + y − 1, −x, z − 1/3, D −x + y − 2, −x, z − 1/3, E y − 1, −x + y, z − 1/6, F y − 2, −x + y − 1, z − 1/6.

Fig. S1
Fig. S2 The connection between two adjacent triple helical units of ABC viewed from the c-axis (pink: K3, black dotted lines: benzene rings).

Fig. S3 (a) \(\{K1Cd3K3-BDC\}_n\) single-helical chain (helix F). (b) View of unequal double-helical chains D and E. Two different chains are marked as dark-yellow \(\{Cd1Cd2-BDC\}_n\) (D) and turquoise \(\{Cd2Cd3-BDC\}_n\) (E), respectively. (c) View of the hierarchical assembly of the triple concentric helical system DEF in 1D. (d) The idealized mode of the triple helical system. (e, f, g) View of the helical chains from the c-axis. Phenyl rings were omitted for charity.
Fig. S4 (a) View of DE with K2 (red) and K3 (pink) linkages. (b, c) The connection of F with D and E through m-BDC$^{2-}$ bridges (black dot lines represent benzene rings). (d) The connection between two adjacent triple-helical units (blue: K1, red: K2, black dotted lines: benzene rings).

Fig. S5 The connection between two adjacent triple helical units of DEF viewed from the c-axis (blue: K1, red: K2, black dotted lines: benzene rings).
Fig. S6 View of the interweaving of AB and DE (a) and of two DE (b). View of the interweaving of AB and DE (c) and of two DE (d) viewed from the c-axis.

Fig. S7 Simulated and experimental XRD powder patterns of 1D (red) and 1L (green).
Fig. S8 TGA curves of 1D (red) and 1L (green).

Fig. S9 Luminescent spectra at room temperature of 1D (red) and 1L (green).
Fig. S10 IR spectra of 1D (red) and 1L (green).