Supplementary information to accompany "The Structure of the Melamine-Cyanuric Acid Co-Crystal"

1. Photograph of the crystal employed for the X-ray diffraction study.

Photograph of a pale grey needle of **CA.M** lit from below, taken at 4× optical zoom.

2. Simulated precession photographs calculated using all recorded diffraction images. Selected reflections are labelled.

h1l

h0l

hk0

hk2

3. X-ray powder diffraction data

A finely ground sample was analysed by x-ray powder diffraction using a Siemens D5000 diffractometer operating with Cu K α radiation. The diffraction pattern was recorded with a step size of 0.020° and counting time 1.0 s over the angular range 5 $\leq 2\theta / \circ \leq 70$. The low angle data are shown above.

4. Quantum chemical calculations

RI-SMP3/CBS	E(RI-MP2/CBS(3,4)) [H]	E(3) correction [MP3/aug-ano-pVDZ] [H]	Etot [H]
CA – M	-951.485200269566	0.01790	-951.474461
CA – CA -1011.120418533		0.04621	-1011.092694
M - M	-891.840486254439	-0.00985	-891.846398
CA.M – M.CA vs CA.M–CA.M	-24.9 kJ/mol	-25.8 kJ/mol	

Table 4.1: Total energies of the dimer stacks (CA–M, CA–CA and M–M) computed at the RI-SMP3/CBS(3,4) using a mixed basis set extrapolation. The last line provides an estimation of the relative stacking interaction energies for the CA.M–M.CA versus the CA.M–CA.M arrangement.

5. Hydrogen atom location (partial protonation of melamine)

There is evidence of some proton transfer from the cyanuric acid to melamine. Approximately 35 % of the melamine molecules are protonated at N5 and cyanuric acid deprotonated at N14. The difference Fourier map in Figure 3a (main text) shows this.

The two forms (unprotonated and protonated melamine) are shown below. Symmetry equivalent atoms are generated by the operator i = x, -y, z.

Minor form. Fraction 0.35

6. Crystal structure data tables

Identification code	CAM			
Empirical formula	C12 H18 N18 O6			
Formula weight	510.40			
Temperature	100(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	I 2/m			
Unit cell dimensions	a = 14.8152(19) Å	$\alpha = 90^{\circ}$.		
	b = 9.6353(18) Å	$\beta = 93.194(11)^{\circ}.$		
	c = 7.0405(9) Å	$\gamma = 90^{\circ}.$		
Volume	1003.5(3) Å ³			
Z	2			
Density (calculated)	1.689 Mg/m ³			
Absorption coefficient	0.139 mm ⁻¹			
F(000)	528			
Crystal size	$0.36\times0.11\times0.11~mm^3$			
Theta range for data collection	2.52 to 29.19°.			
Index ranges	$-20 \le h \le 20, -13 \le k \le 13, -9 \le$	$\leq 1 \leq 8$		
Reflections collected	7067			
Independent reflections	1434 [R(int) = 0.0462]			
Completeness to theta = 25.30°	99.9 %			
Absorption correction	Analytical			
Max. and min. transmission	0.9849 and 0.9517			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	1434 / 2 / 113			
Goodness-of-fit on F ²	0.957			
Final R indices [I>2sigma(I)]	R1 = 0.0353, $wR2 = 0.0898$			
R indices (all data)	R1 = 0.0727, wR2 = 0.1047			
Largest diff. peak and hole	0.241 and -0.242 e.Å ⁻³			

Table 6.1. Crystal data and structure refinement for melamine-cyanuric acid.

	Х	У	Z	U(eq)
N(1)	1666(1)	0	10461(3)	22(1)
C(2)	2481(1)	0	9759(3)	19(1)
N(3)	2867(1)	1248(1)	9432(2)	19(1)
C(4)	3687(1)	1193(1)	8662(2)	19(1)
N(5)	4116(1)	0	8219(3)	20(1)
N(6)	4091(1)	2382(1)	8297(2)	21(1)
O(10)	8286(1)	0	4514(2)	22(1)
C(11)	7547(1)	0	5231(3)	19(1)
N(12)	7104(1)	-1209(1)	5636(2)	20(1)
C(13)	6268(1)	-1257(1)	6373(2)	19(1)
N(14)	5879(1)	0	6757(3)	20(1)
O(15)	5883(1)	-2366(1)	6679(2)	24(1)

Table 6.2. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å²× 10³) for melamine-cyanuric acid. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)-C(2)	1.330(2)	N(3)-C(2)-N(3)#1	124.82(17)
N(1)-H(1)	0.88(2)	C(2)-N(3)-C(4)	115.35(11)
C(2)-N(3)	1.3562(14)	N(6)-C(4)-N(5)	117.78(12)
C(2)-N(3)#1	1.3562(14)	N(6)-C(4)-N(3)	117.86(11)
N(3)-C(4)	1.3600(17)	N(5)-C(4)-N(3)	124.35(12)
C(4)-N(6)	1.3244(16)	C(4)#1-N(5)-C(4)	115.69(17)
C(4)-N(5)	1.3575(16)	C(4)#1-N(5)-H(5)	122.15(12)
N(5)-C(4)#1	1.3575(16)	C(4)-N(5)-H(5)	122.15(13)
N(5)-H(5)	0.85(8)	C(4)-N(6)-H(6A)	121.2(12)
N(6)-H(6A)	0.87(2)	C(4)-N(6)-H(6B)	117.9(13)
N(6)-H(6B)	0.84(2)	H(6A)-N(6)-H(6B)	120.9(18)
O(10)-C(11)	1.232(2)	O(10)-C(11)-N(12)#1	122.03(8)
C(11)-N(12)#1	1.3746(15)	O(10)-C(11)-N(12)	122.03(8)
C(11)-N(12)	1.3746(15)	N(12)#1-C(11)-N(12)	115.92(16)
N(12)-C(13)	1.3708(17)	C(13)-N(12)-C(11)	123.97(12)
N(12)-H(12)	0.84(3)	C(13)-N(12)-H(12)	120.3(14)
C(13)-O(15)	1.2354(14)	C(11)-N(12)-H(12)	115.5(15)
C(13)-N(14)	1.3746(15)	O(15)-C(13)-N(12)	122.04(11)
N(14)-C(13)#1	1.3746(15)	O(15)-C(13)-N(14)	121.70(12)
N(14)-H(14)	0.93(4)	N(12)-C(13)-N(14)	116.26(12)
		C(13)#1-N(14)-C(13)	123.58(16)
C(2)-N(1)-H(1)	122.4(13)	C(13)#1-N(14)-H(14)	118.16(11)
N(1)-C(2)-N(3)	117.59(8)	C(13)-N(14)-H(14)	118.16(11)
N(1)-C(2)-N(3)#1	117.59(8)		

Table 6.3. Bond lengths [Å] and angles [°] for melamine-cyanuric acid.

Symmetry transformations used to generate equivalent atoms:

#1 x,-y,z

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	19(1)	14(1)	33(1)	0	11(1)	0
C(2)	18(1)	17(1)	21(1)	0	4(1)	0
N(3)	18(1)	17(1)	24(1)	1(1)	5(1)	-1(1)
C(4)	20(1)	16(1)	21(1)	-1(1)	2(1)	0(1)
N(5)	20(1)	15(1)	24(1)	0	5(1)	0
N(6)	19(1)	14(1)	31(1)	-1(1)	10(1)	0(1)
O(10)	21(1)	17(1)	28(1)	0	7(1)	0
C(11)	20(1)	16(1)	21(1)	0	3(1)	0
N(12)	21(1)	12(1)	26(1)	-2(1)	7(1)	1(1)
C(13)	19(1)	17(1)	22(1)	0(1)	4(1)	1(1)
N(14)	19(1)	15(1)	26(1)	0	7(1)	0
O(15)	24(1)	16(1)	32(1)	1(1)	8(1)	-1(1)

Table 6.4. Anisotropic displacement parameters ($Å^2 \times 10^3$) for melamine-cyanuric acid. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2h k a^* b^* U^{12}$]

	Х	У	Z	U(eq)
H(5)	4610(50)	0	7670(110)	21(7)
H(1)	1387(12)	770(20)	10760(30)	36(5)
H(6A)	4615(13)	2399(19)	7800(30)	28(4)
H(6B)	3834(13)	3120(20)	8590(30)	32(4)
H(12)	7357(14)	-1940(30)	5300(30)	50(6)
H(14)	5310(30)	0	7240(60)	21(7)

Table 6.5. Hydrogen coordinates ($\times 10^4$) and isotropic displacement parameters (Å²×10³) for melamine-cyanuric acid.