Control of Growth Mode and Crystallinity of Aluminum Doped Zinc Oxide Thin Film at Room Temperature by Self-Assembled Monolayer Assisted Modulation on Substrate Surface Energy

Thieu Thi Tien Vo1, Yu-Hsuan Ho1, Pao-Hung Lin2, and Yian Tai1*

1Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

2Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

*Corresponding Author:

Prof. Yian Tai

Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road Sec. 4, Taipei 106, Taiwan.

Phone: +886-2-2737-6620, Fax: +886-2-2737-6644

E-mail: ytaimail.ntust.edu.tw
Figure S1. C1s XPS spectra of pristine and various alkylsilane SAMs modified glass substrates.
Figure S2. AFM images and surface roughness of (a) pristine, (b) C3-SAM, (c) C8-SAM, (d) C12-SAM, and (e) C18-SAM modified glass substrates.
Figure S3. SEM images of AZO films deposited at different deposition time 1, 5 and 60 minutes on C8-SAM ((a), (c), and (e)) and C12-SAM ((b), (d), and (f)) modified glass substrates.
Table S1. The optical bangap of AZO thin films deposited on pristine and various alkylsilane SAMs modified glass substrates.

<table>
<thead>
<tr>
<th>AZO films</th>
<th>AZO/glass</th>
<th>AZO/C3/glass</th>
<th>AZO/C8/glass</th>
<th>AZO/C12/glass</th>
<th>AZO/C18/glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_g (eV)</td>
<td>3.34</td>
<td>3.35</td>
<td>3.36</td>
<td>3.37</td>
<td>3.37</td>
</tr>
</tbody>
</table>