Supporting materials (CrystEngComm):

Unusual silver nanostructures prepared by Aerosol Spray Pyrolysis

Anna A. Semenovaa, Vladimir K. Ivanovb, Sergey V. Savilovc, Eugene A. Goodilina,b,c,*

aDepartment of Materials Science, Moscow State University, Lenin Hills, Moscow 119991, Russia, * - corresponding author, e-mail: goodilin@inorg.chem.msu.ru; Tel. +7 495 9394609

bKurnakov's Institute of General and Inorganic Chemistry of RAS, Moscow, Leninskiy prospect

cFaculty of Chemistry, Moscow State University, Moscow, Russia, 119992

\textbf{Fig.S1.} Micrographs of a starfish nanoparticle held under the beam of electron microscope, a – original image, b, c – the same after 10 and 20 sec. of holding in the view field of the SEM microscope, respectively.

\textbf{Fig.S2.} A magnified view of a cuboid superficially decorated with silver nanoparticles.
Fig. S3. Columnal growth of particles in the condensation zone. a – the resulting structure, b – a magnified view of the beginning of growth.
Fig. S4. Decomposition of ultrasonic mist of aqueous diaminsilver hydroxide in air at 750 – 950°C. (a) typical plasmonic peaks for a mixture of silver nanoparticles produced from the mist at 950°C (taken from the condensation zone), (b - d) a hierarchic self-assembled planar structure found in a condensed product after mist pyrolysis decorated around its perimeter with AgNPs of spherical (b) or cubic (c) shapes, covered, in turn with smaller AgNPs.