Electronic Supplementary Information (ESI)

Lanthanide metal-organic frameworks constructed by asymmetric 2-nitro-biphenyl-4,4′-dicarboxylate ligand: syntheses, structures, luminescence and magnetic investigations

Li-Rong Guo, Xiao-Liang Tang, Zheng-Hua Ju, Kai-Ming Zhang, Hui-E Jiang and Wei-Sheng Liu*

Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China. Fax: +86-931-8912582; Tel: +86-931-8915151; E-mail: liuws@lzu.edu.cn
Table S1 Selected bond lengths (Å) and angles (°) for complexes 1-8

1

<table>
<thead>
<tr>
<th></th>
<th>Bond Lengths (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu1-O2C</td>
<td>2.172(18) Eu1-O11</td>
<td>2.474(15) N1-O6</td>
</tr>
<tr>
<td>Eu1-O7</td>
<td>2.290(20) Eu1-O1W</td>
<td>2.540(30) N2-C20</td>
</tr>
<tr>
<td>Eu1-O4B</td>
<td>2.401(17) Eu1-O1D</td>
<td>2.560(20) N2-O9</td>
</tr>
<tr>
<td>Eu1-O3</td>
<td>2.431(17) N1-C13</td>
<td>1.482(19) N2-O10</td>
</tr>
<tr>
<td>Eu1-O8A</td>
<td>2.460(30) N1-O5</td>
<td>1.260(20)</td>
</tr>
<tr>
<td>O2C-Eu1-O7</td>
<td>61.8(7) O7-Eu1-O11</td>
<td>78.4(6) O3-Eu1-O1W</td>
</tr>
<tr>
<td>O2C-Eu1-O4B</td>
<td>93.8(6) O7-Eu1-O1W</td>
<td>130.2(14) O3-Eu1-O1D</td>
</tr>
<tr>
<td>O2C-Eu1-O3</td>
<td>153.0(5) O7-Eu1-O1D</td>
<td>85.7(7) O8A-Eu1-O11</td>
</tr>
<tr>
<td>O2C-Eu1-O8A</td>
<td>77.5(8) O4B-Eu1-O3</td>
<td>90.5(6) O8A-Eu1-O1W</td>
</tr>
<tr>
<td>O2C-Eu1-O11</td>
<td>137.1(6) O4B-Eu1-O8A</td>
<td>145.0(7) O8A-Eu1-O1D</td>
</tr>
<tr>
<td>O2C-Eu1-O1W</td>
<td>78.4(11) O4B-Eu1-O11</td>
<td>60.3(5) O11-Eu1-O1W</td>
</tr>
<tr>
<td>O2C-Eu1-O1D</td>
<td>119.0(6) O4B-Eu1-O1W</td>
<td>76.6(11) O11-Eu1-O1D</td>
</tr>
<tr>
<td>O7-Eu1-O4B</td>
<td>77.3(7) O4B-Eu1-O1D</td>
<td>129.7(6) O1W-Eu1-O1D</td>
</tr>
<tr>
<td>O7-Eu1-O3</td>
<td>144.7(7) O3-Eu1-O8A</td>
<td>83.7(7)</td>
</tr>
<tr>
<td>O7-Eu1-O8A</td>
<td>124.5(6) O3-Eu1-O11</td>
<td>66.9(5)</td>
</tr>
</tbody>
</table>

2

<table>
<thead>
<tr>
<th></th>
<th>Bond Lengths (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd1-O7</td>
<td>2.320(17) Gd1-O11</td>
<td>2.603(18) N2-C20</td>
</tr>
<tr>
<td>Gd1-O4B</td>
<td>2.388(15) Gd1-O1D</td>
<td>2.671(19) N2-O9</td>
</tr>
<tr>
<td>Gd1-O1W</td>
<td>2.400(30) N1-C13</td>
<td>1.480(20) N2-O10</td>
</tr>
<tr>
<td>Gd1-O8A</td>
<td>2.391(19) N1-O5</td>
<td>1.300(30)</td>
</tr>
<tr>
<td>O2C-Gd1-O7</td>
<td>60.6(6) O7-Gd1-O3</td>
<td>139.8(6) O1W-Gd1-O11</td>
</tr>
<tr>
<td>O2C-Gd1-O4B</td>
<td>90.0(6) O7-Gd1-O11</td>
<td>76.4(6) O1W-Gd1-O1D</td>
</tr>
<tr>
<td>O2C-Gd1-O1W</td>
<td>79.9(7) O7-Gd1-O1D</td>
<td>82.7(6) O8A-Gd1-O3</td>
</tr>
<tr>
<td>O2C-Gd1-O8A</td>
<td>80.3(7) O4B-Gd1-O1W</td>
<td>79.1(7) O8A-Gd1-O11</td>
</tr>
<tr>
<td>O2C-Gd1-O3</td>
<td>159.6(6) O4B-Gd1-O8A</td>
<td>149.8(6) O8A-Gd1-O1D</td>
</tr>
<tr>
<td>O2C-Gd1-O11</td>
<td>134.9(7) O4B-Gd1-O3</td>
<td>89.5(5) O3-Gd1-O11</td>
</tr>
<tr>
<td>O2C-Gd1-O1D</td>
<td>117.2(6) O4B-Gd1-O11</td>
<td>59.6(6) O3- Gd1-O1D</td>
</tr>
<tr>
<td>O7-Gd1-O4B</td>
<td>77.0(5) O4B-Gd1-O1D</td>
<td>124.9(6) O11-Gd1-O1D</td>
</tr>
<tr>
<td>O7-Gd1-O1W</td>
<td>130.5(7) O1W-Gd1-O8A</td>
<td>70.8(8)</td>
</tr>
<tr>
<td>O7-Gd1-O8A</td>
<td>124.3(5) O1W-Gd1-O3</td>
<td>81.9(7)</td>
</tr>
</tbody>
</table>

3

<table>
<thead>
<tr>
<th></th>
<th>Bond Lengths (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nd1-O2C</td>
<td>2.208(16) Nd1-O8A</td>
<td>2.423(18) N1-O6</td>
</tr>
<tr>
<td>Nd1-O7</td>
<td>2.384(15) Nd1-O11</td>
<td>2.592(12) N2-C20</td>
</tr>
<tr>
<td>Nd1-O4B</td>
<td>2.467(13) Nd1-O1D</td>
<td>2.677(16) N2-O9</td>
</tr>
<tr>
<td>Nd1-O3</td>
<td>2.467(14) N1-C13</td>
<td>1.500(20) N2-O10</td>
</tr>
<tr>
<td>Nd1-O1W</td>
<td>2.454(15) N1-O5</td>
<td>1.290(30)</td>
</tr>
<tr>
<td>O2C-Nd1-O7</td>
<td>60.9(5) O7-Nd1-O8A</td>
<td>124.9(5) O3-Nd1-O11</td>
</tr>
<tr>
<td>O2C-Nd1-O4B</td>
<td>93.8(5) O7-Nd1-O11</td>
<td>74.9(5) O3-Nd1-O1D</td>
</tr>
<tr>
<td>O2C-Nd1-O3</td>
<td>157.9(5) O7-Nd1-O1D</td>
<td>83.7(5) O1W-Nd1-O8A</td>
</tr>
<tr>
<td>O2C-Nd1-O1W</td>
<td>77.7(5) O4B-Nd1-O3</td>
<td>91.0(5) O1W-Nd1-O11</td>
</tr>
<tr>
<td>O2C-Nd1-O8A</td>
<td>78.7(6) O4B-Nd1-O1W</td>
<td>76.2(5) O1W-Nd1-O1D</td>
</tr>
<tr>
<td>O2C-Nd1-O11</td>
<td>133.4(5) O4B-Nd1-O8A</td>
<td>148.0(5) O8A-Nd1-O11</td>
</tr>
<tr>
<td>O2C-Nd1-O1D</td>
<td>117.5(6) O4B-Nd1-O11</td>
<td>59.0(4) O8A-Nd1-O1D</td>
</tr>
<tr>
<td>O7-Nd1-O4B</td>
<td>74.8(5) O4B-Nd1-O1D</td>
<td>126.4(5) O11-Nd1-O1D</td>
</tr>
<tr>
<td>O7-Nd1-O3</td>
<td>140.9(6) O3-Nd1-O1W</td>
<td>82.6(5)</td>
</tr>
<tr>
<td>O7-Nd1-O1W</td>
<td>126.7(6) O3-Nd1-O8A</td>
<td>85.8(5)</td>
</tr>
</tbody>
</table>

4

<table>
<thead>
<tr>
<th></th>
<th>Bond Lengths (Å)</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La1-O2C</td>
<td>2.370(20) La1-O1W</td>
<td>2.611(12) N1-O6</td>
</tr>
<tr>
<td>La1-O7</td>
<td>2.400(20) La1-O11</td>
<td>2.608(17) N2-C20</td>
</tr>
<tr>
<td>La1-O3</td>
<td>2.494(16) La1-O1D</td>
<td>2.640(20) N2-O9</td>
</tr>
<tr>
<td>La1-O4B</td>
<td>2.540(18) N1-C13</td>
<td>1.460(20) N2-O10</td>
</tr>
<tr>
<td>La1-O8A</td>
<td>2.550(30) N1-O5</td>
<td>1.290(20)</td>
</tr>
<tr>
<td>O2C-La1-O7</td>
<td>61.8(7) O7-La1-O1W</td>
<td>123.9(7) O4B-La1-O11</td>
</tr>
<tr>
<td></td>
<td>O2C-La1-O3</td>
<td>O2C-La1-O4B</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>153.4(5)</td>
<td>93.1(6)</td>
</tr>
<tr>
<td></td>
<td>O7-La1-O11</td>
<td>O7-La1-O1D</td>
</tr>
<tr>
<td></td>
<td>78.3(7)</td>
<td>86.3(7)</td>
</tr>
<tr>
<td></td>
<td>O4B-La1-O1D</td>
<td>80.8A-La1-O1W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sm1-O2C</th>
<th>Sm1-O7</th>
<th>Sm1-O3</th>
<th>Sm1-O4B</th>
<th>Sm1-O11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.190(20)</td>
<td>2.420(20)</td>
<td>2.548(17)</td>
<td>2.520(20)</td>
<td>2.450(30)</td>
</tr>
<tr>
<td></td>
<td>Ce1-O2C</td>
<td>Ce1-O7</td>
<td>Ce1-O3</td>
<td>Ce1-O4B</td>
<td>Ce1-O8A</td>
</tr>
<tr>
<td></td>
<td>159.5(7)</td>
<td>2.450(30)</td>
<td>2.548(17)</td>
<td>2.520(20)</td>
<td>2.450(30)</td>
</tr>
<tr>
<td></td>
<td>O7-La1-O11</td>
<td>N1-O6</td>
<td>O7-La1-O1W</td>
<td>O7-La1-O1D</td>
<td>N1-O5</td>
</tr>
<tr>
<td></td>
<td>2.690(30)</td>
<td>1.160(30)</td>
<td>2.563(12)</td>
<td>1.4250(30)</td>
<td>1.266(8)</td>
</tr>
<tr>
<td></td>
<td>N1-O6</td>
<td>1.160(30)</td>
<td>1.462(6)</td>
<td>1.266(8)</td>
<td>1.266(8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Pr1-O2C</th>
<th>Pr1-O7</th>
<th>Pr1-O3</th>
<th>Pr1-O4B</th>
<th>Pr1-O8A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.180(20)</td>
<td>2.400(20)</td>
<td>2.548(17)</td>
<td>2.520(19)</td>
<td>2.420(30)</td>
</tr>
<tr>
<td></td>
<td>Pr1-O11</td>
<td>Pr1-O1W</td>
<td>Pr1-O1D</td>
<td>N1-C13</td>
<td>N1-O5</td>
</tr>
<tr>
<td></td>
<td>2.660(20)</td>
<td>2.529(11)</td>
<td>2.740(20)</td>
<td>1.410(20)</td>
<td>1.360(30)</td>
</tr>
<tr>
<td></td>
<td>N1-O6</td>
<td>1.130(30)</td>
<td>1.463(6)</td>
<td>1.266(8)</td>
<td>1.266(8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>O2C-Prl-O7</th>
<th>O2C-Prl-O3</th>
<th>O2C-Prl-O4B</th>
<th>O2C-Prl-O1W</th>
<th>O2C-Prl-O11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.180(20)</td>
<td>2.400(20)</td>
<td>2.548(17)</td>
<td>2.520(19)</td>
<td>2.420(30)</td>
</tr>
<tr>
<td></td>
<td>Pr1-O11</td>
<td>Pr1-O1W</td>
<td>Pr1-O1D</td>
<td>Pr1-O8A</td>
<td>Pr1-O8A</td>
</tr>
<tr>
<td></td>
<td>2.660(20)</td>
<td>2.529(11)</td>
<td>2.740(20)</td>
<td>1.410(20)</td>
<td>1.360(30)</td>
</tr>
<tr>
<td></td>
<td>N1-O6</td>
<td>1.130(30)</td>
<td>1.463(6)</td>
<td>1.266(8)</td>
<td>1.266(8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sm1-O2C</th>
<th>Sm1-O7</th>
<th>Sm1-O3</th>
<th>Sm1-O4B</th>
<th>Sm1-O8A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.070(20)</td>
<td>2.350(20)</td>
<td>2.465(17)</td>
<td>2.370(30)</td>
<td>2.474(19)</td>
</tr>
<tr>
<td></td>
<td>Sm1-O1W</td>
<td>Sm1-O1I</td>
<td>Sm1-O1D</td>
<td>N1-C13</td>
<td>N1-O5</td>
</tr>
<tr>
<td></td>
<td>2.481(12)</td>
<td>2.648(18)</td>
<td>2.690(20)</td>
<td>1.470(20)</td>
<td>1.340(30)</td>
</tr>
<tr>
<td></td>
<td>N1-O6</td>
<td>1.150(30)</td>
<td>1.464(6)</td>
<td>1.257(8)</td>
<td>1.265(8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>O2C-Sml-O7</th>
<th>O2C-Sml-O4B</th>
<th>O2C-Sml-O8A</th>
<th>O2C-Sml-O3</th>
<th>O2C-Sml-O1W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>59.9(8)</td>
<td>95.8(6)</td>
<td>81.9(9)</td>
<td>160.1(6)</td>
<td>80.5(6)</td>
</tr>
<tr>
<td></td>
<td>O7-Sml-O1W</td>
<td>O7-Sml-O1I</td>
<td>O7-Sml-O1D</td>
<td>O4B-Sml-O8A</td>
<td>O4B-Sml-O3</td>
</tr>
<tr>
<td></td>
<td>128.4(7)</td>
<td>76.4(7)</td>
<td>84.8(8)</td>
<td>150.5(7)</td>
<td>88.9(7)</td>
</tr>
<tr>
<td></td>
<td>O2A-Sml-O11</td>
<td>O3-Sml-O1W</td>
<td>O3-Sml-O1I</td>
<td>O3-Sml-O11</td>
<td>O3-Sml-O1D</td>
</tr>
<tr>
<td></td>
<td>139.4(9)</td>
<td>81.8(8)</td>
<td>81.5(6)</td>
<td>63.8(6)</td>
<td>73.9(7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>O2C-Sml-O11</th>
<th>O2C-Sml-O1D</th>
<th>O2C-Sml-O4B</th>
<th>O2C-Sml-O8A</th>
<th>O2C-Sml-O3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>134.5(7)</td>
<td>118.2(7)</td>
<td>78.0(5)</td>
<td>123.7(6)</td>
<td>139.7(8)</td>
</tr>
<tr>
<td></td>
<td>O4B-Sml-O1W</td>
<td>O4B-Sml-O11</td>
<td>O4B-Sml-O11</td>
<td>O8A-Sml-O3</td>
<td>O8A-Sml-O1W</td>
</tr>
<tr>
<td></td>
<td>122.7(6)</td>
<td>146.0(6)</td>
<td>146.0(6)</td>
<td>84.6(8)</td>
<td>72.6(8)</td>
</tr>
<tr>
<td>Complexes</td>
<td>CShMs</td>
<td>Octagon (D_{5h})</td>
<td>Heptagonal pyramid (C_{7v})</td>
<td>Hexagonal bipyramid (D_{6h})</td>
<td>Cube (C_{4v})</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>4 (La-NO₂)</td>
<td>30.06019</td>
<td>22.34302</td>
<td>15.60951</td>
<td>10.98305</td>
<td>2.44744</td>
</tr>
<tr>
<td>5 (Ce-NO₂)</td>
<td>30.36443</td>
<td>21.92258</td>
<td>15.78234</td>
<td>11.41003</td>
<td>2.76238</td>
</tr>
<tr>
<td>6 (Pr-NO₂)</td>
<td>30.40270</td>
<td>22.09121</td>
<td>15.76218</td>
<td>11.12154</td>
<td>2.66028</td>
</tr>
<tr>
<td>3 (Nd-NO₂)</td>
<td>30.32569</td>
<td>22.16273</td>
<td>15.93143</td>
<td>11.30358</td>
<td>2.49645</td>
</tr>
<tr>
<td>7 (Sm-NO₂)</td>
<td>30.62776</td>
<td>21.94864</td>
<td>15.72264</td>
<td>11.17153</td>
<td>2.80056</td>
</tr>
<tr>
<td>1 (Eu-NO₂)</td>
<td>30.62828</td>
<td>21.34102</td>
<td>16.17977</td>
<td>11.34817</td>
<td>2.29691</td>
</tr>
<tr>
<td>2 (Gd-NO₂)</td>
<td>30.55985</td>
<td>21.82165</td>
<td>16.20503</td>
<td>11.42644</td>
<td>2.66023</td>
</tr>
<tr>
<td>8 (Tb-NO₂)</td>
<td>30.82879</td>
<td>22.50488</td>
<td>16.05152</td>
<td>11.23072</td>
<td>3.04076</td>
</tr>
</tbody>
</table>

Table S2 Continuous Shape Measures (CShMs) of the coordination sphere of Ln(III) in complexes 1-8

<table>
<thead>
<tr>
<th>Complexes</th>
<th>Ln-O-C(-O-) angles (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1-O1-La1D</td>
<td>101.0(20)</td>
</tr>
<tr>
<td>C1-O2-La1E</td>
<td>170.0(30)</td>
</tr>
<tr>
<td>C1-O3-La1l</td>
<td>146.0(8)</td>
</tr>
<tr>
<td>C1-O4-La1B</td>
<td>129.3(12)</td>
</tr>
<tr>
<td>C1-O7-La1l</td>
<td>150.8(17)</td>
</tr>
<tr>
<td>C1-O8-La1A</td>
<td>136.9(15)</td>
</tr>
<tr>
<td>C1-O1-Nd1D</td>
<td>103.1(19)</td>
</tr>
<tr>
<td>C1-O2-Nd1E</td>
<td>172.0(20)</td>
</tr>
<tr>
<td>C1-O3-Nd1</td>
<td>143.3(9)</td>
</tr>
<tr>
<td>C1-O4-Nd1B</td>
<td>126.9(12)</td>
</tr>
<tr>
<td>C1-O7-Nd1l</td>
<td>152.3(15)</td>
</tr>
<tr>
<td>C1-O8-Nd1A</td>
<td>139.5(14)</td>
</tr>
</tbody>
</table>

Table S3 The Ln-O-C(-O-) angles (°) of complexes 1-8
Table S4

The integral intensities of $^5D_0 \rightarrow ^7F_J (J = 0, 1, 2, 3, 4)$ transitions for complex 1*

<table>
<thead>
<tr>
<th>Integral ranges</th>
<th>$^5D_0 \rightarrow ^7F_J$ transitions</th>
<th>Integral intensities</th>
<th>Integral ratio</th>
<th>I_{tot}/I_{MD}</th>
</tr>
</thead>
<tbody>
<tr>
<td>577-581 nm</td>
<td>$J = 0$</td>
<td>1.64×10^4</td>
<td>0.003</td>
<td>1/0.139 = 7.19</td>
</tr>
<tr>
<td>583-603 nm</td>
<td>$J = 1$</td>
<td>77.60×10^4</td>
<td>0.139</td>
<td></td>
</tr>
<tr>
<td>605-638 nm</td>
<td>$J = 2$</td>
<td>298.13×10^4</td>
<td>0.534</td>
<td></td>
</tr>
<tr>
<td>647-657 nm</td>
<td>$J = 3$</td>
<td>6.53×10^4</td>
<td>0.012</td>
<td></td>
</tr>
<tr>
<td>666-715 nm</td>
<td>$J = 4$</td>
<td>174.61×10^4</td>
<td>0.312</td>
<td></td>
</tr>
</tbody>
</table>

*This table was compiled according to the corrected emission spectrum of 1 shown in Fig. S6.

Fig. S1 The least asymmetric unit of complexes 1-8, in which the two sets of positions were presented clearly. The M and M' represent the same lanthanide ions [Ln$^{3+}$ = Eu$^{3+}$(1), Gd$^{3+}$(2), Nd$^{3+}$(3), La$^{3+}$(4), Ce$^{3+}$(5), Pr$^{3+}$(6), Sm$^{3+}$(7), and Tb$^{3+}$(8)] located at different positions.
Fig. S2 The PXRD patterns (a) and IR spectra (b) of complexes 1-8.

Fig. S3 TGA curves of complexes 1-8.
Fig. S4 The room-temperature UV-Vis spectra of H$_2$bpdc-NO$_2$ and complex 1 measured in the solid state.

Fig. S5 The solid-state emission spectra of complex 1 excited at 395 nm and 466 nm at room temperature, respectively (Ex slit = Em slit = 0.6 nm).

Fig. S6 The solid-state corrected emission spectra of complex 1 excited at 466 nm at room temperature (Ex slit = Em slit = 0.6 nm).
Fig. S7 The decay curve of 3 monitored at 1055 nm and detected at room temperature ($\lambda_{\text{ex}} = 582$ nm). The fitting curve with a monoexponential function is presented as the solid line.