Supporting Information

Water-soluble inorganic salts with ultrahigh specific capacitance: crystallization transformation investigation of CuCl_2 electrodes

Kunfeng Chen¹², Shuyan Song¹, Keyan Li², Dongfeng Xue¹²,*

¹ State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
² School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

*Corresponding author. E-mail: dongfeng@ciac.ac.cn
Table S1 Specific capacitance of CuO reported in literatures

<table>
<thead>
<tr>
<th>CuO morphology</th>
<th>Specific capacitance F/g</th>
<th>Electrolyte</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuO nanosheet arrays grown on nickel foam</td>
<td>569</td>
<td>6M KOH</td>
<td>1</td>
</tr>
<tr>
<td>lotus-like CuO/Cu(OH)$_2$ hierarchical arrays</td>
<td>278</td>
<td>5M NaOH</td>
<td>2</td>
</tr>
<tr>
<td>flower-like nanostructures</td>
<td>133.6</td>
<td>6M KOH</td>
<td>3</td>
</tr>
<tr>
<td>carbon nanotube/CuO composites</td>
<td>60</td>
<td>6M KOH</td>
<td>4</td>
</tr>
<tr>
<td>thin film of CuO multilayer nanosheets</td>
<td>43</td>
<td>1M Na$_2$SO$_4$</td>
<td>5</td>
</tr>
</tbody>
</table>

Table S2 Pseudocapacitance of metal cations in the present work

<table>
<thead>
<tr>
<th>Active Ion (ion)</th>
<th>Faradic Reaction</th>
<th>Theoretical capacitance (ion)</th>
<th>Practical capacitance (ion)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$^{2+}$</td>
<td>Cu$^{2+}$ + e \leftrightarrow Cu$^+$</td>
<td>5061 (0.3 V)</td>
<td>5442 F/g (CuCl$_2$)</td>
</tr>
</tbody>
</table>

The calculation of theoretical capacitance of active cation.

Q = CV
where Q= charge C= capacitance (F), V = operating voltage window

Charge with 1 mol metal cation, one electron per metal cation
Q=1 mol \times 6.02 \times 1023 mol$^{-1} \times$ 1.6 \times 10$^{-19}$ C = 9.632 \times 104 C

Thus capacitance C= Q/V

Theoretical specific capacitance of active cation $C_m = C/M$, where M is molecular weight.

$C_m = $ specific capacitance (F/g)

The calculated theoretical capacitances of active cations and their practical capacitance are shown in Table S2.
Fig. S1 XRD pattern of the original CuCl$_2$ blending with PVDF and acetylene black with NMP as solvent before electrochemical measurement. For comparison, the standard XRD pattern of CuCl$_2$·H_2O (PDF # 33-451) is also shown.
Fig. S2. (A and B) Charge-discharge curves at different current densities between 1 and 20 A/g. (C) Cyclic voltammetry of inorganic salt electrodes at different scan rates between 1 and 300 mV/s. (D) The cathode peak current versus the scan rate.
Fig. S3 SEM image of CuCl$_2$ electrode dipped in KOH without undergoing electrochemical measurement.
Fig. S4. EDX and SEM prove that the sheet-like products were CuO.
Fig. S5. (A) Cyclic voltammograms showing the evolution process of CuCl2 electrode at the scan rate of 10mV/s. (B) Cycle performance of CuCl2 electrodes at the current density of 1A/g in 2M KOH.
Fig. S6 SEM images of electrodes obtained after different charge-discharge cycles.
Fig. S7. FTIR spectra of electrodes after different charge-discharge cycles and naked Ni foam.
Fig. S8 (A) Cu2p XPS and (B) Auger spectra (Cu LMM) of pristine, charged and discharged electrodes. (C) Cu2p XPS of electrode after 1st charge process. Two different peaks centered at 933.6, and 932.5 eV, respectively.