Supplementary Information

Crystallography and interfacial kinetic controlled ultra-uniform single crystal silver nanobelts and their optical properties

Jingwen Zhua and Dongfeng Xue*a\,b

a School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
b State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China. Email: dongfeng@ciac.ac.cn

Fig. S1 (a) SEM image of nanorods obtained at a lower current density of 0.05mA/cm2. (b) SEM image of nanorods obtained at a lower current density of 0.05mA/cm2, showing smooth surfaces. (c) SEM image of nanorod-like nanostructures obtained at a higher current density of 5mA/cm2, which are not uniform in diameters (d) SEM image of nanodisks formed on the templates surface, after nanobelt bundles filling in the templates. (e) SEM image of silver nanodendrites formed on the template surface when the electrolyte solution is increased to 1.5M AgNO\textsubscript{3} with other conditions unchanged.