Electronic Supplementary Information (ESI)

A sildenafil cocrystal based on acetylsalicylic acid exhibits an enhanced intrinsic dissolution rate

Miroslav Žegarac,a Edislav Lekšić,a Primož Šket,b,c Janez Plavec,b,c Maja Devčić Bogdanović,b Dejan-Krešimir Bučar,a,d Miljenko Dumić,e Ernest Meštrović*a

a PLIVA Croatia, TAPI R&D, Prilaz Baruna Filipovića 25, HR-10000 Zagreb, Croatia.
E-mail: Ernest.Mestrovic@pliva.com
b Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
c EN-FIST Center of Excellence, SI-1000 Ljubljana, Slovenia
d Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0A, UK.
E-mail: d.bucar@ucl.ac.uk
e Department of Biotechnology, University of Rijeka, R. Matejčić 2, HR-51000 Rijeka, Croatia

1. Materials
2. Crystallographic studies
3. Thermal analyses
4. Spectroscopic studies
5. Intrinsic-dissolution-rate studies
6. HPLC analysis
7. References
1. Materials

Sildenafil of 98% purity was obtained from an in-house source and used without further purification. Acetylsalisylic acid (98%, Merck) and 2-propanol were used as received.

2. Crystallographic studies

2.1. Powder X-ray diffraction

X-ray powder diffraction patterns were obtained by using a Phillips X'Pert Pro diffractometer equipped with an X'celerator RTMS detector using Ni-filtered CuKα radiation (λ = 1.5406 Å) generated at 45 kV and 40 mA. The sample (~150 mg) was placed on a circular sample holder (16 mm diameter, PW1811/16, PW1811/00). Data collection was conducted at ambient conditions using the X’Pert Data Collector program\(^1\) (v. 2.2h). The scans were performed in the continuous mode (gonio scan axis) in the 3-40° 2θ range with a step size of 0.017° and a step time of 40 s. The acquired data was analysed using the XPertDataView program.\(^1\)

2.2 Single-crystal X-ray diffraction

Single crystal diffraction data was collected using a Nonius KappaCCD diffractometer (being equipped with a 95mm CCD camera on a κ-goniostat) and monochromated CuKα radiation (λ = 1.54184 Å, graded mirrors). The diffraction data of 1 was collected at 293 K.

Data collection, cell refinement and data reduction were performed using Collect\(^2\) and HKL Scalepack/Denzo\(^3\) respectively. The structures were solved by direct methods and refined on \(F^2\) by weighted full-matrix least squares. SHELX\(^4\) was used to solve and refine the crystal structures. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms belonging to C(sp\(^2\)) and C(sp\(^3\)) carbon atoms were placed in geometrically idealized positions with isotropic displacement parameters and fixed at 1.2 times of \(U_{eq}\) for methylene carbon atoms and 1.5 times \(U_{eq}\) for methyl groups. Hydrogen atoms belonging to O and N atoms were placed in geometrically idealized positions with isotropic displacement parameters and fixed at 1.5 times of \(U_{eq}\) of the corresponding atoms.

The investigated single crystal of compound 1 was a small-sized, brittle and poorly diffracting needle. Numerous datasets were collected on single crystals from different batches, whereof the one of the highest quality is reported herein. Attempts to collect a dataset of higher quality at low temperatures failed, as the fine needles tend to crack under the N\(_2\) flow.

3. Thermal analyses

3.1. Thermogravimetric analysis

TGA profiles were generated in range of 25-420 °C using TA Instruments Hi-Res TGA 2950. About 10 mg of the sample was placed in an open platinum pan. The mass loss of the sample was determined as a function of temperature. The resulting data were analyzed using the TA Instruments Universal Analysis 2000 software (v. 4.7A). The TGA thermograms of solids 1 and 2 are shown on Figures S1 and S2, respectively.
3.1. Differential-scanning calorimetry (DSC)

DSC thermograms was acquired in the temperature range of 25–250 °C using a \textit{TA Q1000} instrument. About 2-5 mg of the sample was encapsulated in a pierced Al pan. The same empty pan was used as reference. A nitrogen purge at 50 mL/min was employed. The obtained data was examined using the \textit{TA Instruments Universal Analysis 2000} software (v. 4.7A). The DSC thermograms of solids 1 and 2 are shown on Figures S1 and S2, respectively.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure_s1.png}
\caption{DSC (blue) and TG (green) thermograms of solid 1 ($t_{\text{melting}} = 148.0$ °C).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure_s2.png}
\caption{DSC (blue) and TG (green) thermograms of solid 2 ($t_{\text{melting}} = 134.3$ °C).}
\end{figure}
4. Spectroscopic studies

4.1. FT-IR spectroscopy

FT-IR of solids 1 and 2 were recorded on a Nicolet 6700 spectrophotometer and measured in the range of 4000-400 cm\(^{-1}\) using the KBr-pellet technique (sample concentration: 1 mg in 10 mg of KBr). The data analysis was performed using the Omnic program (v. 8.0).

![Figure S3. FT-IR spectra of sildenafil (blue), solid 1 (green) and solid 2 (red).](image)

1H, 13C and 15N CP-MAS NMR spectroscopy

The \(^1\)H and \(^{13}\)C NMR spectra of samples 1 and 2 were recorded on an Agilent Technologies NMR System 600 MHz NMR spectrometer equipped with a 3.2 mm NB Double Resonance HX MAS Solids Probe. The Larmor frequencies of proton and carbon nuclei were 599.62 and 150.77 MHz, respectively. The \(^1\)H MAS NMR spectra were externally referenced using adamantane. The \(^{13}\)C CP-MAS NMR spectra were externally referenced using hexamethylbenzene. Samples were spun at the magic angle with 20 kHz during \(^1\)H measurement and with 16 kHz during \(^{13}\)C measurement. The \(^1\)H spectra were acquired within 16 scans using a spin echo sequence with a repetition delay of 10 s. The pulse sequence used for acquiring the \(^{13}\)C spectra was a standard cross-polarization MAS pulse sequence with high-power proton decoupling during acquisition. The repetition delay in all \(^{13}\)C data acquisitions was 5 s and the number of scans was between 500 and 13770, depending on the sample.

The \(^{15}\)N NMR spectra of solids 1 and 2 were also recorded on an Agilent Technologies NMR System 600 MHz NMR spectrometer, which was equipped with a 3.2 mm NB Double Resonance HX MAS Solids Probe. The Larmor frequencies of proton and nitrogen nuclei were 599.62 and 60.77 MHz, respectively. The \(^{15}\)N CP-MAS NMR spectra were externally referenced using ammonium sulphate (\(\delta\) -355.7 ppm, as compared to nitromethane at \(\delta\) 0.0 ppm). The samples were spun at the magic angle with 10 kHz during all \(^{15}\)N measurement. The pulse sequence used for \(^{15}\)N data acquisition was a standard cross-polarization MAS pulse sequence with high-power proton decoupling during acquisition. The repetition delay in all \(^{15}\)N experiments was 5 s and the number of scans was between 4430 and 27400, depending on the sample.
Figure S4. 1H MAS NMR spectrum of sildenafil.

Figure S5. 1H MAS NMR spectrum of sample 1.

Figure S6. 1H MAS NMR spectrum of sample 2.
Figures S7, S8, and S9.

Figure S7. 1H MAS NMR spectrum of acetilsalicylic acid.

Figure S8. 1H MAS NMR spectrum of salicylic acid.

Figure S9. 13C CP-MAS NMR spectrum of sildenafil.
Figure S10. 13C CP-MAS NMR spectrum of sample 1.

Figure S11. 13C CP-MAS NMR spectrum of sample 2.

Figure S12. 13C CP-MAS NMR spectrum of acetilsalicylic acid.
Figure S13. 13C CP-MAS NMR spectrum of salicylic acid.

Figure S14. 15N CP-MAS NMR spectrum of sildenafil.

Figure S15. 15N CP-MAS NMR spectrum of sample 1.
5. Intrinsic dissolution rate studies

Intrinsic dissolution rates were examined on PHARMA TEST dissolution apparatus (VanKel intrinsic dissolution apparatus) at 100 rpm. In a typical experiment, 100 mg of the solid sample was pressed into a pellet at 1.5 MT for 1 min. IDRs were examined in three different media, namely degassed water, degassed water with 1.2% NaCl and a pH=1.2 buffer. The volume of the dissolution media was 900 mL. The obtained solutions were collected in five-minute intervals, and analyzed using a Carry 50 spectrophotometer at 292 nm.

6. HPLC analyses

The HPLC analysis of compound 2 was performed on an Agilent (1100 Series) instrument that was fitted with a Phenomenex Intersil ODS-3 column (150x4.60mm, 5 μm particle size). The mobile phase was composed of a KH₂PO₄ buffer (pH=2.3; 65%) and acetonitrile (35%). The components of solid 2 were eluted over 8 min at rate of 1 mL min⁻¹. The column was kept at a temperature of 40°C. The separation of the solid’s components was monitored in real time by a Carry 50 spectrophotometer at 292 nm.

The composition of solid 2 was determined by calculating retention factors for acetylsalicylic acid and salicylic acid. A typical HPLC chromatogram for solid 2 is shown in Fig. S17, while the data used to determine the composition of solid 2 is shown in Table S1. and S2.

Table S1. Standard solution of sildenafil, acetylsalicylic acid and salicylic acid used to determine the composition of solid 2 via HPLC analyses.

<table>
<thead>
<tr>
<th>compound</th>
<th>m/mg</th>
<th>V/mL</th>
<th>c/mg mL⁻¹</th>
<th>area</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>sildenafil</td>
<td>51.22</td>
<td>50</td>
<td>1.024</td>
<td>4610.06</td>
<td>4500.25</td>
</tr>
<tr>
<td>acetylsalicylic acid</td>
<td>53.23</td>
<td>50</td>
<td>1.065</td>
<td>2665.56</td>
<td>2503.81</td>
</tr>
<tr>
<td>salicylic acid</td>
<td>50.37</td>
<td>50</td>
<td>1.007</td>
<td>6498.41</td>
<td>6450.67</td>
</tr>
</tbody>
</table>
Table S2. Composition of solid 2, as determined via HPLC analyses.

<table>
<thead>
<tr>
<th>batch</th>
<th>m/mg</th>
<th>V/mL</th>
<th>c/mg mL^-1</th>
<th>compound</th>
<th>area</th>
<th>RF</th>
<th>assay*/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31.36</td>
<td>25</td>
<td>1.25</td>
<td>acetylsalicylic acid</td>
<td>794.90</td>
<td>633.69</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>salicylic acid</td>
<td>1556.74</td>
<td>1241.03</td>
<td>19.2</td>
</tr>
<tr>
<td>2</td>
<td>26.91</td>
<td>25</td>
<td>1.08</td>
<td>acetylsalicylic acid</td>
<td>682.65</td>
<td>634.20</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>salicylic acid</td>
<td>1316.57</td>
<td>1223.13</td>
<td>19.0</td>
</tr>
<tr>
<td>3</td>
<td>21.04</td>
<td>25</td>
<td>0.84</td>
<td>acetylsalicylic acid</td>
<td>499.82</td>
<td>593.89</td>
<td>23.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>salicylic acid</td>
<td>1017.29</td>
<td>1208.75</td>
<td>18.7</td>
</tr>
<tr>
<td>4</td>
<td>27.98</td>
<td>25</td>
<td>1.12</td>
<td>acetylsalicylic acid</td>
<td>745.83</td>
<td>666.39</td>
<td>26.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>salicylic acid</td>
<td>1240.61</td>
<td>1108.48</td>
<td>17.2</td>
</tr>
<tr>
<td>5</td>
<td>25.74</td>
<td>25</td>
<td>1.03</td>
<td>acetylsalicylic acid</td>
<td>627.40</td>
<td>609.36</td>
<td>24.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>salicylic acid</td>
<td>1318.43</td>
<td>1280.53</td>
<td>19.9</td>
</tr>
</tbody>
</table>

* theoretical w/w%: sildenafil – 59.9%, acetylsalicylic acid – 22.7%, salicylic acid – 17.4%

Figure S17. A typical HPLC chromatogram of solid 2.

7. References