Electronic Supplementary Information

Studies on phase stability, mechanical, optical and electronic properties of a new Gd₂CaZnO₅ phosphor system for LEDs

Dongwei Xu,^a D. Haranath,^{b*} Haiying He,^{c*} Savvi Mishra,^b Deepika Yadav,^bB. Sivaiah,^b B. G. Bhasker,^b N. Vijayan,^bA. Dhar,^b Jiajie Zhu,^a Virendra Shanker,^b and Ravindra Pandey^a

Photoluminescence Studies:

Figure S1. Photoluminescence excitation and emission spectra of Gd_2CaZnO_5 phosphor when monitored under UV (377 nm) excitation. (Color figure online)

The photoluminescence excitation and emission spectra are recorded at room temperature using Edinburgh Luminescence Spectrometer (Model: F900) equipped with a xenon lamp. Spectra are monitored in the range 200-800 nm. Figure S1 shows the broad band emission spectrum of Gd_2CaZnO_5 phosphor system with a maximum at ~560 nm upon UV (377 nm) excitation radiations. Broad emission of the undoped lattice could be attributed to the surface states and oxygen deficiency related defects.

Figure S2. Flow chart depicting the step-by-step process of making Gd_2CaZnO_5 phosphor system. (Color figure online)