Electronic Supporting Information

Copper(II) complexes of 3- and 4-picolinehydroxamic acids: from mononuclear compounds to 1D- and 2D-coordination polymers

Irina A. Golenya, Elzbieta Gumienna-Kontecka, Matti Haukka, Oleksandr M. Korsun, Oleg N. Kalugin, and Igor O. Fritsky

Supporting Information
Table S1. Bond distances (Å) and angles (°) in 1.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å) (E)</th>
<th>Bond</th>
<th>Distance (Å) (E)</th>
<th>Bond</th>
<th>Distance (Å) (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1—O1</td>
<td>1.9250 (13)</td>
<td>N1—C1</td>
<td>1.311 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu1—O1i</td>
<td>1.9250 (13)</td>
<td>N1—H1N</td>
<td>0.86 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu1—O2</td>
<td>1.9248 (14)</td>
<td>N2—C6</td>
<td>1.337 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu1—O2i</td>
<td>1.9248 (14)</td>
<td>N2—C5</td>
<td>1.341 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu1—O3</td>
<td>2.8282 (18)</td>
<td>N2—H2N</td>
<td>0.84 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl1—O5</td>
<td>1.412 (10)</td>
<td>C1—C2</td>
<td>1.479 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl1—O4B</td>
<td>1.418 (9)</td>
<td>C2—C6</td>
<td>1.385 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl1—O4</td>
<td>1.420 (10)</td>
<td>C2—C3</td>
<td>1.395 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl1—O3</td>
<td>1.4356 (16)</td>
<td>C3—C4</td>
<td>1.391 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl1—O5B</td>
<td>1.449 (10)</td>
<td>C3—H3</td>
<td>0.9500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl1—O6</td>
<td>1.453 (5)</td>
<td>C4—C5</td>
<td>1.383 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl1—O6B</td>
<td>1.473 (6)</td>
<td>C4—H4</td>
<td>0.9500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1—C1</td>
<td>1.272 (2)</td>
<td>C5—H5</td>
<td>0.9500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—N1</td>
<td>1.373 (2)</td>
<td>C6—H6</td>
<td>0.9500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—O2i</td>
<td>180.00 (5)</td>
<td>C1—N1—H1N</td>
<td>125.5 (17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—O1</td>
<td>84.71 (6)</td>
<td>O2—N1—H1N</td>
<td>115.6 (17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2i—Cu1—O1</td>
<td>95.29 (6)</td>
<td>C6—N2—C5</td>
<td>122.90 (18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—O1i</td>
<td>95.29 (6)</td>
<td>C6—N2—H2N</td>
<td>118.2 (18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2i—Cu1—O1i</td>
<td>84.71 (6)</td>
<td>C5—N2—H2N</td>
<td>118.6 (18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1—Cu1—O1i</td>
<td>180.0</td>
<td>O1—C1—N1</td>
<td>120.31 (17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—O3</td>
<td>88.05 (5)</td>
<td>O1—C1—C2</td>
<td>119.25 (17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2i—Cu1—O3</td>
<td>91.95 (5)</td>
<td>N1—C1—C2</td>
<td>120.43 (17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1—Cu1—O3</td>
<td>92.39 (6)</td>
<td>C6—C2—C3</td>
<td>118.76 (18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1i—Cu1—O3</td>
<td>87.61 (6)</td>
<td>C6—C2—C1</td>
<td>115.97 (17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Cl1—O4</td>
<td>111.2 (11)</td>
<td>C3—C2—C1</td>
<td>125.21 (18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Cl1—O3</td>
<td>113.0 (8)</td>
<td>C4—C3—C2</td>
<td>119.64 (19)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4—Cl1—O3</td>
<td>107.1 (9)</td>
<td>C4—C3—H3</td>
<td>120.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4B—Cl1—O5B</td>
<td>107.8 (10)</td>
<td>C2—C3—H3</td>
<td>120.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Angle (°)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Cl1—O6</td>
<td>113.5 (5)</td>
<td>C5—C4—C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4—Cl1—O6</td>
<td>107.5 (5)</td>
<td>C5—C4—H4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3—Cl1—O6</td>
<td>104.0 (3)</td>
<td>C3—C4—H4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4B—Cl1—O6B</td>
<td>108.6 (5)</td>
<td>N2—C5—C4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5B—Cl1—O6B</td>
<td>103.1 (6)</td>
<td>N2—C5—H5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl1—O1—Cu1</td>
<td>109.79 (12)</td>
<td>C4—C5—H5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1—O2—Cu1</td>
<td>107.25 (10)</td>
<td>C4—C5—H5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl1—O3—Cu1</td>
<td>120.10 (10)</td>
<td>C4—C5—H5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl1—N1—O2</td>
<td>117.72 (16)</td>
<td>C2—C6—H6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—O1—Cl1</td>
<td>−4.25 (13)</td>
<td>Cu1—O1—C1—N1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2i—Cu1—O1—Cl1</td>
<td>175.75 (13)</td>
<td>Cu1—O1—C1—C2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3—Cu1—O1—Cl1</td>
<td>−92.07 (13)</td>
<td>O2—N1—C1—O1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1—Cu1—O2—N1</td>
<td>3.42 (11)</td>
<td>O2—N1—C1—C2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1i—Cu1—O2—N1</td>
<td>−176.58 (11)</td>
<td>O1—C1—C2—C6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O3—Cu1—O2—N1</td>
<td>95.99 (11)</td>
<td>N1—C1—C2—C6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5—Cl1—O3—Cu1</td>
<td>−165.3 (10)</td>
<td>O1—C1—C2—C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4B—Cl1—O3—Cu1</td>
<td>−26.0 (9)</td>
<td>N1—C1—C2—C3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O4—Cl1—O3—Cu1</td>
<td>−42.4 (8)</td>
<td>C6—C2—C3—C4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O5B—Cl1—O3—Cu1</td>
<td>−147.0 (7)</td>
<td>C1—C2—C3—C4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6—Cl1—O3—Cu1</td>
<td>71.2 (10)</td>
<td>C2—C3—C4—C5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O6B—Cl1—O3—Cu1</td>
<td>100.2 (11)</td>
<td>C6—N2—C5—C4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—O3—Cl1</td>
<td>168.24 (12)</td>
<td>C3—C4—C5—N2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2i—Cu1—O3—Cl1</td>
<td>−11.76 (12)</td>
<td>C5—N2—C6—C2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1—Cu1—O3—Cl1</td>
<td>−107.14 (11)</td>
<td>C3—C2—C6—N2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1i—Cu1—O3—Cl1</td>
<td>72.86 (11)</td>
<td>C1—C2—C6—N2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu1—O2—N1—Cl1</td>
<td>−2.21 (19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1.

Table S2. Bond distances (Å) and angles (°) in 4a.
<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1—O2</td>
<td>1.9329 (15)</td>
<td>C2—C3</td>
<td>1.391 (3)</td>
</tr>
<tr>
<td>Cu1—O1</td>
<td>1.9469 (16)</td>
<td>C2—C6</td>
<td>1.394 (3)</td>
</tr>
<tr>
<td>Cu1—N4</td>
<td>1.9595 (18)</td>
<td>C3—C4</td>
<td>1.373 (3)</td>
</tr>
<tr>
<td>Cu1—N3</td>
<td>1.9721 (18)</td>
<td>C3—H3</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu1—O2<sup>+</sup></td>
<td>2.5239 (16)</td>
<td>C4—H4</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu1—Cu1<sup>+</sup></td>
<td>3.2239 (5)</td>
<td>C5—C6</td>
<td>1.374 (3)</td>
</tr>
<tr>
<td>Cl1—O4</td>
<td>1.4256 (17)</td>
<td>C5—H5</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cl1—O5</td>
<td>1.4347 (18)</td>
<td>C6—H6</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cl1—O3</td>
<td>1.4453 (17)</td>
<td>C11—C12</td>
<td>1.387 (3)</td>
</tr>
<tr>
<td>Cl1—O6</td>
<td>1.4651 (17)</td>
<td>C11—H11</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cl2—O10</td>
<td>1.4340 (18)</td>
<td>C12—C13</td>
<td>1.383 (3)</td>
</tr>
<tr>
<td>Cl2—O8</td>
<td>1.4357 (19)</td>
<td>C12—H12</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cl2—O7</td>
<td>1.4407 (18)</td>
<td>C13—C14</td>
<td>1.388 (3)</td>
</tr>
<tr>
<td>Cl2—O9</td>
<td>1.4605 (17)</td>
<td>C13—H13</td>
<td>0.9500</td>
</tr>
<tr>
<td>O1—C1</td>
<td>1.274 (3)</td>
<td>C14—C15</td>
<td>1.384 (3)</td>
</tr>
<tr>
<td>O2—N1</td>
<td>1.366 (2)</td>
<td>C14—H14</td>
<td>0.9500</td>
</tr>
<tr>
<td>N1—C1</td>
<td>1.314 (3)</td>
<td>C15—C16</td>
<td>1.482 (3)</td>
</tr>
<tr>
<td>N1—H1A</td>
<td>0.86 (3)</td>
<td>C16—C17</td>
<td>1.384 (3)</td>
</tr>
<tr>
<td>N2—C5</td>
<td>1.339 (3)</td>
<td>C17—C18</td>
<td>1.391 (3)</td>
</tr>
<tr>
<td>N2—C4</td>
<td>1.340 (3)</td>
<td>C17—H17</td>
<td>0.9500</td>
</tr>
<tr>
<td>N2—H2A</td>
<td>0.84 (3)</td>
<td>C18—C19</td>
<td>1.381 (3)</td>
</tr>
<tr>
<td>N3—C11</td>
<td>1.343 (3)</td>
<td>C18—H18</td>
<td>0.9500</td>
</tr>
<tr>
<td>N3—C15</td>
<td>1.353 (3)</td>
<td>C19—C20</td>
<td>1.385 (3)</td>
</tr>
<tr>
<td>N4—C20</td>
<td>1.345 (3)</td>
<td>C19—H19</td>
<td>0.9500</td>
</tr>
<tr>
<td>N4—C16</td>
<td>1.352 (3)</td>
<td>C20—H20</td>
<td>0.9500</td>
</tr>
<tr>
<td>C1—C2</td>
<td>1.486 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—O1</td>
<td>84.36 (6)</td>
<td>C3—C2—C1</td>
<td>122.8 (2)</td>
</tr>
<tr>
<td>O2—Cu1—N4</td>
<td>174.18 (7)</td>
<td>C6—C2—C1</td>
<td>117.7 (2)</td>
</tr>
<tr>
<td>O1—Cu1—N4</td>
<td>96.62 (7)</td>
<td>C4—C3—C2</td>
<td>119.1 (2)</td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
<td>Torsion (°)</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—N3</td>
<td>97.56 (7)</td>
<td>C4—C3—H3 120.4</td>
<td></td>
</tr>
<tr>
<td>O1—Cu1—N3</td>
<td>167.82 (7)</td>
<td>C2—C3—H3 120.4</td>
<td></td>
</tr>
<tr>
<td>N4—Cu1—N3</td>
<td>82.70 (7)</td>
<td>N2—C4—C3 119.7 (2)</td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—O2'</td>
<td>88.31 (6)</td>
<td>N2—C4—H4 120.1</td>
<td></td>
</tr>
<tr>
<td>O1—Cu1—O2'</td>
<td>100.66 (6)</td>
<td>C3—C4—H4 120.1</td>
<td></td>
</tr>
<tr>
<td>N4—Cu1—O2'</td>
<td>85.86 (6)</td>
<td>N2—C5—C6 119.6 (2)</td>
<td></td>
</tr>
<tr>
<td>N3—Cu1—O2'</td>
<td>91.43 (6)</td>
<td>N2—C5—H5 120.2</td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—Cu1'</td>
<td>51.49 (5)</td>
<td>C6—C5—H5 120.2</td>
<td></td>
</tr>
<tr>
<td>O1—Cu1—Cu1'</td>
<td>94.93 (5)</td>
<td>C5—C6—C2 119.1 (2)</td>
<td></td>
</tr>
<tr>
<td>N4—Cu1—Cu1'</td>
<td>122.68 (5)</td>
<td>C5—C6—H6 120.4</td>
<td></td>
</tr>
<tr>
<td>N3—Cu1—Cu1'</td>
<td>95.64 (5)</td>
<td>C2—C6—H6 120.4</td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—Cu1'</td>
<td>36.82 (3)</td>
<td>C6—C11—C12 121.9 (2)</td>
<td></td>
</tr>
<tr>
<td>O4—Cl1—O5</td>
<td>110.54 (12)</td>
<td>N3—C11—H11 119.0</td>
<td></td>
</tr>
<tr>
<td>O4—Cl1—O3</td>
<td>110.99 (11)</td>
<td>C12—C11—H11 119.0</td>
<td></td>
</tr>
<tr>
<td>O5—Cl1—O3</td>
<td>109.63 (11)</td>
<td>C13—C12—C11 118.4 (2)</td>
<td></td>
</tr>
<tr>
<td>O4—Cl1—O6</td>
<td>109.46 (11)</td>
<td>C13—C12—H12 120.8</td>
<td></td>
</tr>
<tr>
<td>O5—Cl1—O6</td>
<td>108.75 (11)</td>
<td>C11—C12—H12 120.8</td>
<td></td>
</tr>
<tr>
<td>O3—Cl1—O6</td>
<td>107.38 (10)</td>
<td>C12—C13—C14 120.0 (2)</td>
<td></td>
</tr>
<tr>
<td>O10—Cl2—O8</td>
<td>111.12 (12)</td>
<td>C12—C13—H13 120.0</td>
<td></td>
</tr>
<tr>
<td>O10—Cl2—O7</td>
<td>109.70 (12)</td>
<td>C14—C13—H13 120.0</td>
<td></td>
</tr>
<tr>
<td>O8—Cl2—O7</td>
<td>109.23 (11)</td>
<td>C15—C14—C13 118.8 (2)</td>
<td></td>
</tr>
<tr>
<td>O10—Cl2—O9</td>
<td>108.87 (11)</td>
<td>C15—C14—H14 120.6</td>
<td></td>
</tr>
<tr>
<td>O8—Cl2—O9</td>
<td>109.45 (11)</td>
<td>C13—C14—H14 120.6</td>
<td></td>
</tr>
<tr>
<td>O7—Cl2—O9</td>
<td>108.41 (11)</td>
<td>N3—C15—C14 121.2 (2)</td>
<td></td>
</tr>
<tr>
<td>C1—O1—Cu1</td>
<td>108.22 (13)</td>
<td>N3—C15—C16 114.50 (19)</td>
<td></td>
</tr>
<tr>
<td>N1—O2—Cu1</td>
<td>106.96 (12)</td>
<td>C14—C15—C16 124.2 (2)</td>
<td></td>
</tr>
<tr>
<td>C1—N1—O2</td>
<td>118.39 (18)</td>
<td>N4—C16—C17 121.6 (2)</td>
<td></td>
</tr>
<tr>
<td>C1—N1—H1A</td>
<td>124 (2)</td>
<td>N4—C16—C15 114.10 (19)</td>
<td></td>
</tr>
<tr>
<td>O2—N1—H1A</td>
<td>118 (2)</td>
<td>C17—C16—C15 124.3 (2)</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (°) (σ)</td>
<td>Bond</td>
<td>Distance (°) (σ)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>C5—N2—C4</td>
<td>122.8 (2)</td>
<td>C16—C17—C18</td>
<td>118.5 (2)</td>
</tr>
<tr>
<td>C5—N2—H2A</td>
<td>119.9 (18)</td>
<td>C16—C17—H17</td>
<td>120.7</td>
</tr>
<tr>
<td>C4—N2—H2A</td>
<td>117.3 (18)</td>
<td>C18—C17—H17</td>
<td>120.7</td>
</tr>
<tr>
<td>C11—N3—C15</td>
<td>119.65 (19)</td>
<td>C19—C18—C17</td>
<td>119.8 (2)</td>
</tr>
<tr>
<td>C11—N3—Cu1</td>
<td>126.57 (15)</td>
<td>C19—C18—H18</td>
<td>120.1</td>
</tr>
<tr>
<td>C15—N3—Cu1</td>
<td>113.70 (14)</td>
<td>C17—C18—H18</td>
<td>120.1</td>
</tr>
<tr>
<td>C20—N4—C16</td>
<td>119.58 (19)</td>
<td>C18—C19—C20</td>
<td>118.8 (2)</td>
</tr>
<tr>
<td>C20—N4—Cu1</td>
<td>125.81 (16)</td>
<td>C18—C19—H19</td>
<td>120.6</td>
</tr>
<tr>
<td>C16—N4—Cu1</td>
<td>114.54 (14)</td>
<td>C20—C19—H19</td>
<td>120.6</td>
</tr>
<tr>
<td>O1—C1—N1</td>
<td>120.2 (2)</td>
<td>N4—C20—C19</td>
<td>121.6 (2)</td>
</tr>
<tr>
<td>O1—C1—C2</td>
<td>120.16 (19)</td>
<td>N4—C20—H20</td>
<td>119.2</td>
</tr>
<tr>
<td>N1—C1—C2</td>
<td>119.7 (2)</td>
<td>C19—C20—H20</td>
<td>119.2</td>
</tr>
<tr>
<td>C3—C2—C6</td>
<td>119.5 (2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i) −x+1, −y+1, −z.
Table S3. Hydrogen bonds parameters (Å, °) for 4a.

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1—H1A···O9</td>
<td>0.86 (3)</td>
<td>2.01 (3)</td>
<td>2.869 (3)</td>
<td>177 (3)</td>
</tr>
<tr>
<td>N2—H2A···O6</td>
<td>0.84 (3)</td>
<td>1.96 (3)</td>
<td>2.771 (3)</td>
<td>163 (3)</td>
</tr>
</tbody>
</table>

Symmetry codes: (ii) −x+1, −y+1, −z−1.
Table S4. Bond distances (Å) and angles (°) for 7.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1—O2</td>
<td>1.908 (3)</td>
<td>C4—C12</td>
<td>1.402 (6)</td>
</tr>
<tr>
<td>Cu1—O1</td>
<td>1.969 (3)</td>
<td>C4—C5</td>
<td>1.442 (8)</td>
</tr>
<tr>
<td>Cu1—N2</td>
<td>1.997 (3)</td>
<td>C5—C6</td>
<td>1.338 (9)</td>
</tr>
<tr>
<td>Cu1—N1</td>
<td>1.999 (4)</td>
<td>C5—H5</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu1—N3</td>
<td>2.265 (4)</td>
<td>C6—C7</td>
<td>1.426 (8)</td>
</tr>
<tr>
<td>Cl2—O5</td>
<td>1.405 (5)</td>
<td>C6—H6</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cl2—O4</td>
<td>1.414 (4)</td>
<td>C7—C8</td>
<td>1.408 (8)</td>
</tr>
<tr>
<td>Cl2—O3</td>
<td>1.423 (4)</td>
<td>C7—C11</td>
<td>1.415 (6)</td>
</tr>
<tr>
<td>Cl2—O6</td>
<td>1.425 (4)</td>
<td>C8—C9</td>
<td>1.364 (8)</td>
</tr>
<tr>
<td>O1—C15</td>
<td>1.283 (5)</td>
<td>C8—H8</td>
<td>0.9500</td>
</tr>
<tr>
<td>O2—N4</td>
<td>1.361 (5)</td>
<td>C9—C10</td>
<td>1.399 (6)</td>
</tr>
<tr>
<td>N1—C1</td>
<td>1.329 (6)</td>
<td>C9—H9</td>
<td>0.9500</td>
</tr>
<tr>
<td>N1—C12</td>
<td>1.365 (6)</td>
<td>C10—H10</td>
<td>0.9500</td>
</tr>
<tr>
<td>N2—C10</td>
<td>1.328 (6)</td>
<td>C11—C12</td>
<td>1.424 (6)</td>
</tr>
<tr>
<td>N2—C11</td>
<td>1.349 (6)</td>
<td>C13—C18<sup>i</sup></td>
<td>1.389 (6)</td>
</tr>
<tr>
<td>N3—C14</td>
<td>1.329 (6)</td>
<td>C13—H13</td>
<td>0.9500</td>
</tr>
<tr>
<td>N3—C13</td>
<td>1.335 (6)</td>
<td>C14—C16<sup>i</sup></td>
<td>1.390 (6)</td>
</tr>
<tr>
<td>N4—C15</td>
<td>1.309 (5)</td>
<td>C14—H14</td>
<td>0.9500</td>
</tr>
<tr>
<td>N4—H4N</td>
<td>0.8440</td>
<td>C15—C16</td>
<td>1.484 (6)</td>
</tr>
<tr>
<td>C1—C2</td>
<td>1.406 (7)</td>
<td>C16—C17</td>
<td>1.382 (6)</td>
</tr>
<tr>
<td>C1—H1</td>
<td>0.9500</td>
<td>C16—C14<sup>ii</sup></td>
<td>1.390 (6)</td>
</tr>
<tr>
<td>C2—C3</td>
<td>1.376 (8)</td>
<td>C17—C18</td>
<td>1.368 (7)</td>
</tr>
<tr>
<td>C2—H2</td>
<td>0.9500</td>
<td>C17—H17</td>
<td>0.9500</td>
</tr>
<tr>
<td>C3—C4</td>
<td>1.391 (8)</td>
<td>C18—C13<sup>ii</sup></td>
<td>1.389 (6)</td>
</tr>
<tr>
<td>C3—H3</td>
<td>0.9500</td>
<td>C18—H18</td>
<td>0.9500</td>
</tr>
<tr>
<td>O2—Cu1—O1</td>
<td>85.30 (12)</td>
<td>C6—C5—C4</td>
<td>122.1 (5)</td>
</tr>
<tr>
<td>O2—Cu1—N2</td>
<td>170.18 (13)</td>
<td>C6—C5—H5</td>
<td>119.0</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>O1—Cu1—N2</td>
<td>95.18 (13)</td>
<td>C4—C5—H5</td>
<td>119.0</td>
</tr>
<tr>
<td>O2—Cu1—N1</td>
<td>93.91 (14)</td>
<td>C5—C6—C7</td>
<td>121.2 (5)</td>
</tr>
<tr>
<td>O1—Cu1—N1</td>
<td>163.51 (13)</td>
<td>C5—C6—H6</td>
<td>119.4</td>
</tr>
<tr>
<td>N2—Cu1—N1</td>
<td>82.84 (15)</td>
<td>C7—C6—H6</td>
<td>119.4</td>
</tr>
<tr>
<td>O2—Cu1—N3</td>
<td>89.76 (13)</td>
<td>C8—C7—C11</td>
<td>116.8 (5)</td>
</tr>
<tr>
<td>O1—Cu1—N3</td>
<td>89.60 (13)</td>
<td>C8—C7—C6</td>
<td>124.9 (5)</td>
</tr>
<tr>
<td>N2—Cu1—N3</td>
<td>100.05 (13)</td>
<td>C11—C7—C6</td>
<td>118.4 (5)</td>
</tr>
<tr>
<td>N1—Cu1—N3</td>
<td>106.88 (14)</td>
<td>C9—C8—C7</td>
<td>119.5 (4)</td>
</tr>
<tr>
<td>O5—Cl2—O4</td>
<td>110.1 (4)</td>
<td>C9—C8—H8</td>
<td>120.3</td>
</tr>
<tr>
<td>O5—Cl2—O3</td>
<td>108.1 (3)</td>
<td>C7—C8—H8</td>
<td>120.3</td>
</tr>
<tr>
<td>O4—Cl2—O3</td>
<td>107.9 (3)</td>
<td>C8—C9—C10</td>
<td>120.2 (5)</td>
</tr>
<tr>
<td>O5—Cl2—O6</td>
<td>111.6 (3)</td>
<td>C8—C9—H9</td>
<td>119.9</td>
</tr>
<tr>
<td>O4—Cl2—O6</td>
<td>107.5 (3)</td>
<td>C10—C9—H9</td>
<td>119.9</td>
</tr>
<tr>
<td>O3—Cl2—O6</td>
<td>111.7 (3)</td>
<td>N2—C10—C9</td>
<td>121.7 (5)</td>
</tr>
<tr>
<td>C15—O1—Cu1</td>
<td>106.6 (3)</td>
<td>N2—C10—H10</td>
<td>119.1</td>
</tr>
<tr>
<td>N4—O2—Cu1</td>
<td>105.0 (2)</td>
<td>C9—C10—H10</td>
<td>119.1</td>
</tr>
<tr>
<td>C1—N1—C12</td>
<td>118.8 (4)</td>
<td>N2—C11—C7</td>
<td>122.8 (4)</td>
</tr>
<tr>
<td>C1—N1—Cu1</td>
<td>129.5 (3)</td>
<td>N2—C11—C12</td>
<td>117.1 (4)</td>
</tr>
<tr>
<td>C12—N1—Cu1</td>
<td>111.6 (3)</td>
<td>C7—C11—C12</td>
<td>120.1 (4)</td>
</tr>
<tr>
<td>C10—N2—C11</td>
<td>119.0 (4)</td>
<td>N1—C12—C4</td>
<td>123.3 (4)</td>
</tr>
<tr>
<td>C10—N2—Cu1</td>
<td>129.2 (3)</td>
<td>N1—C12—C11</td>
<td>116.3 (4)</td>
</tr>
<tr>
<td>C11—N2—Cu1</td>
<td>111.8 (3)</td>
<td>C4—C12—C11</td>
<td>120.4 (4)</td>
</tr>
<tr>
<td>C14—N3—C13</td>
<td>117.9 (4)</td>
<td>N3—C13—C18i</td>
<td>122.3 (4)</td>
</tr>
<tr>
<td>C14—N3—Cu1</td>
<td>118.5 (3)</td>
<td>N3—C13—H13</td>
<td>118.8</td>
</tr>
<tr>
<td>C13—N3—Cu1</td>
<td>120.9 (3)</td>
<td>C18i—C13—H13</td>
<td>118.8</td>
</tr>
<tr>
<td>C15—N4—O2</td>
<td>120.1 (3)</td>
<td>N3—C14—C16i</td>
<td>123.2 (4)</td>
</tr>
<tr>
<td>C15—N4—H4N</td>
<td>123.0</td>
<td>N3—C14—H14</td>
<td>118.4</td>
</tr>
<tr>
<td>O2—N4—H4N</td>
<td>116.0</td>
<td>C16i—C14—H14</td>
<td>118.4</td>
</tr>
<tr>
<td>N1—C1—C2</td>
<td>121.5 (5)</td>
<td>O1—C15—N4</td>
<td>119.5 (4)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (°)</td>
<td>Bond</td>
<td>Distance (°)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>N1—C1—H1</td>
<td>119.3</td>
<td>O1—C15—C16</td>
<td>120.1 (4)</td>
</tr>
<tr>
<td>C2—C1—H1</td>
<td>119.3</td>
<td>N4—C15—C16</td>
<td>120.3 (4)</td>
</tr>
<tr>
<td>C3—C2—C1</td>
<td>119.1 (5)</td>
<td>C17—C16—C14^ii</td>
<td>118.3 (4)</td>
</tr>
<tr>
<td>C3—C2—H2</td>
<td>120.4</td>
<td>C17—C16—C15</td>
<td>119.3 (4)</td>
</tr>
<tr>
<td>C1—C2—H2</td>
<td>120.4</td>
<td>C14^ii—C16—C15</td>
<td>122.3 (4)</td>
</tr>
<tr>
<td>C2—C3—C4</td>
<td>120.9 (5)</td>
<td>C18—C17—C16</td>
<td>118.7 (4)</td>
</tr>
<tr>
<td>C2—C3—H3</td>
<td>119.6</td>
<td>C18—C17—H17</td>
<td>120.6</td>
</tr>
<tr>
<td>C4—C3—H3</td>
<td>119.6</td>
<td>C16—C17—H17</td>
<td>120.6</td>
</tr>
<tr>
<td>C3—C4—C12</td>
<td>116.4 (5)</td>
<td>C17—C18—C13^ii</td>
<td>119.5 (4)</td>
</tr>
<tr>
<td>C3—C4—C5</td>
<td>125.9 (5)</td>
<td>C17—C18—H18</td>
<td>120.3</td>
</tr>
<tr>
<td>C12—C4—C5</td>
<td>117.8 (5)</td>
<td>C13^ii—C18—H18</td>
<td>120.3</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) x-1/2, -y+1/2, z-1/2.
Table S5. Hydrogen bonds parameters (Å, °) for 7.

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N4—H4N···O4<sup>iii</sup></td>
<td>0.84</td>
<td>2.06</td>
<td>2.907 (5)</td>
<td>176</td>
</tr>
</tbody>
</table>

Symmetry codes: (iii) x−1/2, −y+1/2, z+1/2.
Table S6. Bond distances (Å) and angles (°) for 8.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance (Å)</th>
<th>Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1—O1</td>
<td>1.926 (3)</td>
<td>C9—C10</td>
<td>1.382 (7)</td>
</tr>
<tr>
<td>Cu1—O2</td>
<td>1.939 (3)</td>
<td>C9—H9</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu1—N1</td>
<td>1.998 (4)</td>
<td>C10—H10</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu1—N2</td>
<td>2.002 (4)</td>
<td>C11—C12</td>
<td>1.393 (6)</td>
</tr>
<tr>
<td>Cu1—N3</td>
<td>2.329 (4)</td>
<td>C11—H11</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu1B—O1B</td>
<td>1.889 (3)</td>
<td>C12—C13</td>
<td>1.382 (7)</td>
</tr>
<tr>
<td>Cu1B—O2B</td>
<td>1.966 (3)</td>
<td>C12—H12</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu1B—N1B</td>
<td>1.991 (4)</td>
<td>C13—C14</td>
<td>1.396 (7)</td>
</tr>
<tr>
<td>Cu1B—N2B</td>
<td>2.007 (4)</td>
<td>C13—C16(^i)</td>
<td>1.486 (6)</td>
</tr>
<tr>
<td>Cu1B—N3B</td>
<td>2.317 (4)</td>
<td>C14—C15</td>
<td>1.373 (6)</td>
</tr>
<tr>
<td>O1—N4</td>
<td>1.409 (5)</td>
<td>C14—H14</td>
<td>0.9500</td>
</tr>
<tr>
<td>O2—C16</td>
<td>1.325 (6)</td>
<td>C15—H15</td>
<td>0.9500</td>
</tr>
<tr>
<td>O3—H3O</td>
<td>0.8650</td>
<td>C16—C13(^ii)</td>
<td>1.486 (6)</td>
</tr>
<tr>
<td>O3—H3P</td>
<td>0.8764</td>
<td>O1B—N4B</td>
<td>1.404 (5)</td>
</tr>
<tr>
<td>O4—H4O</td>
<td>0.8596</td>
<td>O2B—C16B</td>
<td>1.322 (5)</td>
</tr>
<tr>
<td>O4—H4P</td>
<td>0.8560</td>
<td>N1B—C1B</td>
<td>1.331 (6)</td>
</tr>
<tr>
<td>O5—H5O</td>
<td>0.8808</td>
<td>N1B—C5B</td>
<td>1.354 (6)</td>
</tr>
<tr>
<td>O6—H6O</td>
<td>0.8703</td>
<td>N2B—C10B</td>
<td>1.328 (6)</td>
</tr>
<tr>
<td>O6—H6P</td>
<td>0.8591</td>
<td>N2B—C6B</td>
<td>1.350 (6)</td>
</tr>
<tr>
<td>O7—H7O</td>
<td>0.8573</td>
<td>N3B—C11B</td>
<td>1.336 (6)</td>
</tr>
<tr>
<td>O8—H8O</td>
<td>0.8592</td>
<td>N3B—C15B</td>
<td>1.348 (6)</td>
</tr>
<tr>
<td>O8—H8P</td>
<td>0.8565</td>
<td>N4B—C16B</td>
<td>1.290 (6)</td>
</tr>
<tr>
<td>O9—H9O</td>
<td>0.8587</td>
<td>N4B—H4M</td>
<td>0.8800</td>
</tr>
<tr>
<td>O9—H9P</td>
<td>0.8599</td>
<td>C1B—C2B</td>
<td>1.386 (6)</td>
</tr>
<tr>
<td>O10—H10O</td>
<td>0.8576</td>
<td>C1B—H1B</td>
<td>0.9500</td>
</tr>
<tr>
<td>O10—H10P</td>
<td>0.8557</td>
<td>C2B—C3B</td>
<td>1.386 (7)</td>
</tr>
<tr>
<td>O11—H11O</td>
<td>0.8787</td>
<td>C2B—H2B</td>
<td>0.9500</td>
</tr>
<tr>
<td>O11—H11P</td>
<td>0.8982</td>
<td>C3B—C4B</td>
<td>1.390 (7)</td>
</tr>
<tr>
<td>Bond</td>
<td>Length (Å)</td>
<td>Bond</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>N1—C5</td>
<td>1.347 (6)</td>
<td>C3B—H3B</td>
<td>0.9500</td>
</tr>
<tr>
<td>N1—C1</td>
<td>1.353 (6)</td>
<td>C4B—C5B</td>
<td>1.386 (7)</td>
</tr>
<tr>
<td>N2—C10</td>
<td>1.340 (6)</td>
<td>C4B—H4B</td>
<td>0.9500</td>
</tr>
<tr>
<td>N2—C6</td>
<td>1.353 (6)</td>
<td>C5B—C6B</td>
<td>1.480 (7)</td>
</tr>
<tr>
<td>N3—C11</td>
<td>1.324 (6)</td>
<td>C6B—C7B</td>
<td>1.392 (7)</td>
</tr>
<tr>
<td>N3—C15</td>
<td>1.342 (6)</td>
<td>C7B—C8B</td>
<td>1.383 (8)</td>
</tr>
<tr>
<td>N4—C16</td>
<td>1.303 (6)</td>
<td>C7B—H7B</td>
<td>0.9500</td>
</tr>
<tr>
<td>N4—H4N</td>
<td>0.8800</td>
<td>C8B—C9B</td>
<td>1.369 (8)</td>
</tr>
<tr>
<td>C1—C2</td>
<td>1.377 (6)</td>
<td>C8B—H8B</td>
<td>0.9500</td>
</tr>
<tr>
<td>C1—H1</td>
<td>0.9500</td>
<td>C9B—C10B</td>
<td>1.402 (7)</td>
</tr>
<tr>
<td>C2—C3</td>
<td>1.399 (7)</td>
<td>C9B—H9B</td>
<td>0.9500</td>
</tr>
<tr>
<td>C2—H2</td>
<td>0.9500</td>
<td>C10B—H10B</td>
<td>0.9500</td>
</tr>
<tr>
<td>C3—C4</td>
<td>1.369 (6)</td>
<td>C11B—C12B</td>
<td>1.378 (7)</td>
</tr>
<tr>
<td>C3—H3</td>
<td>0.9500</td>
<td>C11B—H11B</td>
<td>0.9500</td>
</tr>
<tr>
<td>C4—C5</td>
<td>1.392 (6)</td>
<td>C12B—C13B</td>
<td>1.393 (7)</td>
</tr>
<tr>
<td>C4—H4</td>
<td>0.9500</td>
<td>C12B—H12B</td>
<td>0.9500</td>
</tr>
<tr>
<td>C5—C6</td>
<td>1.476 (6)</td>
<td>C13B—C14B</td>
<td>1.397 (7)</td>
</tr>
<tr>
<td>C7—C8</td>
<td>1.383 (7)</td>
<td>C14B—C15B</td>
<td>1.383 (7)</td>
</tr>
<tr>
<td>C7—H7</td>
<td>0.9500</td>
<td>C14B—H14B</td>
<td>0.9500</td>
</tr>
<tr>
<td>C8—C9</td>
<td>1.387 (7)</td>
<td>C15B—H15B</td>
<td>0.9500</td>
</tr>
<tr>
<td>C8—H8</td>
<td>0.9500</td>
<td>C16B—C13B[iv]</td>
<td>1.484 (6)</td>
</tr>
<tr>
<td>O1—Cu1—O2</td>
<td>84.18 (13)</td>
<td>C11—C12—H12</td>
<td>120.3</td>
</tr>
<tr>
<td>O1—Cu1—N1</td>
<td>172.45 (15)</td>
<td>C12—C13—C14</td>
<td>117.4 (4)</td>
</tr>
<tr>
<td>O2—Cu1—N1</td>
<td>95.40 (14)</td>
<td>C12—C13—C16[i]</td>
<td>120.8 (4)</td>
</tr>
<tr>
<td>O1—Cu1—N2</td>
<td>97.23 (14)</td>
<td>C14—C13—C16[i]</td>
<td>121.8 (4)</td>
</tr>
<tr>
<td>O2—Cu1—N2</td>
<td>165.40 (14)</td>
<td>C15—C14—C13</td>
<td>118.9 (4)</td>
</tr>
<tr>
<td>N1—Cu1—N2</td>
<td>81.29 (15)</td>
<td>C15—C14—H14</td>
<td>120.6</td>
</tr>
<tr>
<td>O1—Cu1—N3</td>
<td>92.89 (14)</td>
<td>C13—C14—H14</td>
<td>120.6</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—N3</td>
<td>97.43 (13)</td>
<td>N3—C15—C14</td>
<td>124.3 (4)</td>
</tr>
<tr>
<td>N1—Cu1—N3</td>
<td>94.63 (14)</td>
<td>N3—C15—H15</td>
<td>117.9</td>
</tr>
<tr>
<td>N2—Cu1—N3</td>
<td>97.01 (14)</td>
<td>C14—C15—H15</td>
<td>117.9</td>
</tr>
<tr>
<td>O1B—Cu1B—O2B</td>
<td>84.93 (13)</td>
<td>N4—C16—O2</td>
<td>124.5 (4)</td>
</tr>
<tr>
<td>O1B—Cu1B—N1B</td>
<td>170.83 (15)</td>
<td>N4—C16—C13ii</td>
<td>118.0 (4)</td>
</tr>
<tr>
<td>O2B—Cu1B—N1B</td>
<td>96.74 (14)</td>
<td>O2—C16—C13ii</td>
<td>117.5 (4)</td>
</tr>
<tr>
<td>O1B—Cu1B—N2B</td>
<td>94.73 (14)</td>
<td>N4B—O1B—Cu1B</td>
<td>109.9 (2)</td>
</tr>
<tr>
<td>O2B—Cu1B—N2B</td>
<td>167.72 (15)</td>
<td>C16B—O2B—Cu1B</td>
<td>105.1 (3)</td>
</tr>
<tr>
<td>N1B—Cu1B—N2B</td>
<td>81.71 (16)</td>
<td>C1B—N1B—C5B</td>
<td>119.1 (4)</td>
</tr>
<tr>
<td>O1B—Cu1B—N3B</td>
<td>91.79 (14)</td>
<td>C1B—N1B—Cu1B</td>
<td>126.4 (3)</td>
</tr>
<tr>
<td>O2B—Cu1B—N3B</td>
<td>98.77 (13)</td>
<td>C5B—N1B—Cu1B</td>
<td>114.5 (3)</td>
</tr>
<tr>
<td>N1B—Cu1B—N3B</td>
<td>96.85 (15)</td>
<td>C10B—N2B—C6B</td>
<td>120.2 (4)</td>
</tr>
<tr>
<td>N2B—Cu1B—N3B</td>
<td>93.51 (15)</td>
<td>C10B—N2B—Cu1B</td>
<td>125.8 (4)</td>
</tr>
<tr>
<td>N4—O1—Cu1</td>
<td>110.3 (2)</td>
<td>C6B—N2B—Cu1B</td>
<td>114.0 (3)</td>
</tr>
<tr>
<td>C16—O2—Cu1</td>
<td>107.0 (3)</td>
<td>C11B—N3B—C15B</td>
<td>116.9 (4)</td>
</tr>
<tr>
<td>H3O—O3—H3P</td>
<td>102.6</td>
<td>C11B—N3B—Cu1B</td>
<td>121.6 (3)</td>
</tr>
<tr>
<td>H4O—O4—H4P</td>
<td>102.5</td>
<td>C15B—N3B—Cu1B</td>
<td>120.7 (3)</td>
</tr>
<tr>
<td>H6O—O6—H6P</td>
<td>105.1</td>
<td>C16B—N4B—O1B</td>
<td>113.4 (4)</td>
</tr>
<tr>
<td>H8O—O8—H8P</td>
<td>111.0</td>
<td>C16B—N4B—H4M</td>
<td>123.3</td>
</tr>
<tr>
<td>H9O—O9—H9P</td>
<td>102.9</td>
<td>O1B—N4B—H4M</td>
<td>123.3</td>
</tr>
<tr>
<td>H100—O10—H10P</td>
<td>106.5</td>
<td>N1B—C1B—C2B</td>
<td>123.1 (5)</td>
</tr>
<tr>
<td>H110—O11—H11P</td>
<td>107.2</td>
<td>N1B—C1B—H1B</td>
<td>118.5</td>
</tr>
<tr>
<td>C5—N1—C1</td>
<td>118.7 (4)</td>
<td>C2B—C1B—H1B</td>
<td>118.5</td>
</tr>
<tr>
<td>C5—N1—Cu1</td>
<td>114.6 (3)</td>
<td>C3B—C2B—C1B</td>
<td>117.9 (5)</td>
</tr>
<tr>
<td>C1—N1—Cu1</td>
<td>126.5 (3)</td>
<td>C3B—C2B—H2B</td>
<td>121.0</td>
</tr>
<tr>
<td>C10—N2—C6</td>
<td>118.9 (4)</td>
<td>C1B—C2B—H2B</td>
<td>121.0</td>
</tr>
<tr>
<td>C10—N2—Cu1</td>
<td>126.9 (3)</td>
<td>C2B—C3B—C4B</td>
<td>119.5 (5)</td>
</tr>
<tr>
<td>C6—N2—Cu1</td>
<td>114.1 (3)</td>
<td>C2B—C3B—H3B</td>
<td>120.2</td>
</tr>
<tr>
<td>C11—N3—C15</td>
<td>116.5 (4)</td>
<td>C4B—C3B—H3B</td>
<td>120.2</td>
</tr>
</tbody>
</table>

S14
<table>
<thead>
<tr>
<th>Bond or Angle</th>
<th>Value (Method)</th>
<th>Bond or Angle</th>
<th>Value (Method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C11—N3—Cu1</td>
<td>119.2 (3)</td>
<td>C5B—C4B—C3B</td>
<td>119.0 (5)</td>
</tr>
<tr>
<td>C15—N3—Cu1</td>
<td>123.9 (3)</td>
<td>C5B—C4B—H4B</td>
<td>120.5</td>
</tr>
<tr>
<td>C16—N4—O1</td>
<td>112.0 (4)</td>
<td>C3B—C4B—H4B</td>
<td>120.5</td>
</tr>
<tr>
<td>C16—N4—H4N</td>
<td>124.0</td>
<td>N1B—C5B—C4B</td>
<td>121.3 (4)</td>
</tr>
<tr>
<td>O1—N4—H4N</td>
<td>124.0</td>
<td>N1B—C5B—C6B</td>
<td>114.7 (4)</td>
</tr>
<tr>
<td>N1—C1—C2</td>
<td>122.7 (4)</td>
<td>C4B—C5B—C6B</td>
<td>124.0 (4)</td>
</tr>
<tr>
<td>N1—C1—H1</td>
<td>118.7</td>
<td>N2B—C6B—C7B</td>
<td>120.7 (5)</td>
</tr>
<tr>
<td>C2—C1—H1</td>
<td>118.7</td>
<td>N2B—C6B—C5B</td>
<td>124.9 (4)</td>
</tr>
<tr>
<td>C1—C2—C3</td>
<td>118.2 (4)</td>
<td>C7B—C6B—C5B</td>
<td>124.4 (5)</td>
</tr>
<tr>
<td>C1—C2—H2</td>
<td>120.9</td>
<td>C8B—C7B—C6B</td>
<td>119.4 (5)</td>
</tr>
<tr>
<td>C3—C2—H2</td>
<td>120.9</td>
<td>C8B—C7B—H7B</td>
<td>120.3</td>
</tr>
<tr>
<td>C4—C3—C2</td>
<td>119.4 (5)</td>
<td>C6B—C7B—H7B</td>
<td>120.3</td>
</tr>
<tr>
<td>C4—C3—H3</td>
<td>120.3</td>
<td>C9B—C8B—C7B</td>
<td>119.3 (5)</td>
</tr>
<tr>
<td>C2—C3—H3</td>
<td>120.3</td>
<td>C9B—C8B—H8B</td>
<td>120.4</td>
</tr>
<tr>
<td>C3—C4—C5</td>
<td>119.6 (4)</td>
<td>C7B—C8B—H8B</td>
<td>120.4</td>
</tr>
<tr>
<td>C3—C4—H4</td>
<td>120.2</td>
<td>C8B—C9B—C10B</td>
<td>119.1 (5)</td>
</tr>
<tr>
<td>C5—C4—H4</td>
<td>120.2</td>
<td>C8B—C9B—H9B</td>
<td>120.5</td>
</tr>
<tr>
<td>N1—C5—C4</td>
<td>121.4 (4)</td>
<td>C10B—C9B—H9B</td>
<td>120.5</td>
</tr>
<tr>
<td>N1—C5—C6</td>
<td>114.6 (4)</td>
<td>N2B—C10B—C9B</td>
<td>121.4 (5)</td>
</tr>
<tr>
<td>C4—C5—C6</td>
<td>124.0 (4)</td>
<td>N2B—C10B—H10B</td>
<td>119.3</td>
</tr>
<tr>
<td>N2—C6—C7</td>
<td>121.5 (4)</td>
<td>C9B—C10B—H10B</td>
<td>119.3</td>
</tr>
<tr>
<td>N2—C6—C5</td>
<td>114.9 (4)</td>
<td>N3B—C11B—C12B</td>
<td>123.8 (4)</td>
</tr>
<tr>
<td>C7—C6—C5</td>
<td>123.6 (4)</td>
<td>N3B—C11B—H11B</td>
<td>118.1</td>
</tr>
<tr>
<td>C8—C7—C6</td>
<td>118.5 (4)</td>
<td>C12B—C11B—H11B</td>
<td>118.1</td>
</tr>
<tr>
<td>C8—C7—H7</td>
<td>120.8</td>
<td>C11B—C12B—C13B</td>
<td>119.5 (4)</td>
</tr>
<tr>
<td>C6—C7—H7</td>
<td>120.8</td>
<td>C11B—C12B—H12B</td>
<td>120.2</td>
</tr>
<tr>
<td>C7—C8—C9</td>
<td>120.2 (4)</td>
<td>C13B—C12B—H12B</td>
<td>120.2</td>
</tr>
<tr>
<td>C7—C8—H8</td>
<td>119.9</td>
<td>C12B—C13B—C14B</td>
<td>116.9 (4)</td>
</tr>
<tr>
<td>C9—C8—H8</td>
<td>119.9</td>
<td>C12B—C13B—C16B''</td>
<td>122.4 (4)</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle (°)</td>
<td>Symmetry Code 1</td>
<td>Bond</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>C10—C9—C8</td>
<td>117.9 (4)</td>
<td></td>
<td>C14B—C13B—C16B(iii)</td>
</tr>
<tr>
<td>C10—C9—H9</td>
<td>121.0</td>
<td></td>
<td>C15B—C14B—C13B</td>
</tr>
<tr>
<td>C8—C9—H9</td>
<td>121.0</td>
<td></td>
<td>C15B—C14B—H14B</td>
</tr>
<tr>
<td>N2—C10—C9</td>
<td>123.0 (4)</td>
<td></td>
<td>C13B—C14B—H14B</td>
</tr>
<tr>
<td>N2—C10—H10</td>
<td>118.5</td>
<td></td>
<td>N3B—C15B—C14B</td>
</tr>
<tr>
<td>C9—C10—H10</td>
<td>118.5</td>
<td></td>
<td>N3B—C15B—H15B</td>
</tr>
<tr>
<td>N3—C11—C12</td>
<td>123.6 (4)</td>
<td></td>
<td>C14B—C15B—H15B</td>
</tr>
<tr>
<td>N3—C11—H11</td>
<td>118.2</td>
<td></td>
<td>N4B—C16B—O2B</td>
</tr>
<tr>
<td>C12—C11—H11</td>
<td>118.2</td>
<td></td>
<td>N4B—C16B—C13B(iv)</td>
</tr>
<tr>
<td>C13—C12—C11</td>
<td>119.3 (4)</td>
<td></td>
<td>O2B—C16B—C13B(iv)</td>
</tr>
<tr>
<td>C13—C12—H12</td>
<td>120.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i) $-x, y+1/2, -z+1/2$; (ii) $-x, y-1/2, -z+1/2$; (iii) $-x+1, y+1/2, -z+1/2$; (iv) $-x+1, y-1/2, -z+1/2$.
Table S7. Hydrogen bonds parameters (Å, °) for 8.

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O3—H3O···O1B</td>
<td>0.87</td>
<td>1.81</td>
<td>2.671</td>
<td>175</td>
</tr>
<tr>
<td>O3—H3O···N4B</td>
<td>0.87</td>
<td>2.56</td>
<td>3.312</td>
<td>147</td>
</tr>
<tr>
<td>O3—H3P···O3</td>
<td>0.88</td>
<td>1.84</td>
<td>2.721</td>
<td>179</td>
</tr>
<tr>
<td>O4—H4O···O3</td>
<td>0.86</td>
<td>1.89</td>
<td>2.750</td>
<td>179</td>
</tr>
<tr>
<td>O4—H4P···O2B</td>
<td>0.86</td>
<td>2.01</td>
<td>2.868</td>
<td>175</td>
</tr>
<tr>
<td>O5—H5O···O2</td>
<td>0.88</td>
<td>1.99</td>
<td>2.863</td>
<td>169</td>
</tr>
<tr>
<td>O6—H6O···O5</td>
<td>0.87</td>
<td>1.95</td>
<td>2.758</td>
<td>154</td>
</tr>
<tr>
<td>O6—H6P···O1</td>
<td>0.86</td>
<td>2.08</td>
<td>2.809</td>
<td>142</td>
</tr>
<tr>
<td>O7—H7O···O10</td>
<td>0.86</td>
<td>2.12</td>
<td>2.974</td>
<td>176</td>
</tr>
<tr>
<td>O8—H8O···O5</td>
<td>0.86</td>
<td>1.90</td>
<td>2.758</td>
<td>179</td>
</tr>
<tr>
<td>O8—H8P···O7</td>
<td>0.86</td>
<td>1.95</td>
<td>2.789</td>
<td>165</td>
</tr>
<tr>
<td>O9—H9O···O8</td>
<td>0.86</td>
<td>1.92</td>
<td>2.783</td>
<td>178</td>
</tr>
<tr>
<td>O9—H9P···O4</td>
<td>0.86</td>
<td>1.93</td>
<td>2.763</td>
<td>164</td>
</tr>
<tr>
<td>O10—H10O···O3</td>
<td>0.86</td>
<td>2.58</td>
<td>3.092</td>
<td>119</td>
</tr>
<tr>
<td>O10—H10P···O7</td>
<td>0.86</td>
<td>2.43</td>
<td>2.974</td>
<td>122</td>
</tr>
<tr>
<td>O11—H11O···O10</td>
<td>0.88</td>
<td>2.30</td>
<td>2.97</td>
<td>133</td>
</tr>
<tr>
<td>O11—H11P···O9</td>
<td>0.90</td>
<td>1.49</td>
<td>2.386</td>
<td>176</td>
</tr>
<tr>
<td>N4—H4N···O11</td>
<td>0.88</td>
<td>1.79</td>
<td>2.558</td>
<td>145</td>
</tr>
<tr>
<td>N4—H4N···O9B</td>
<td>0.88</td>
<td>2.47</td>
<td>3.098</td>
<td>129</td>
</tr>
<tr>
<td>N4B—H4M···O7</td>
<td>0.88</td>
<td>2.07</td>
<td>2.766</td>
<td>136</td>
</tr>
</tbody>
</table>

Symmetry codes: (v) −x+1, −y+1, −z+1; (vi) −x, −y+1, −z; (vii) x, −y+1/2, z−1/2; (viii) x, −y+1/2, z+1/2; (iii) −x+1, y+1/2, −z+1/2; (ix) x−1, y, z; (i) −x, y+1/2, −z+1/2.
Table S8. Bond distances (Å) and angles (°) in 9.

<table>
<thead>
<tr>
<th>Bond/Bond</th>
<th>Distance (Å)</th>
<th>Bond/Bond</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1—O2</td>
<td>1.9238 (17)</td>
<td>C2—C6</td>
<td>1.385 (4)</td>
</tr>
<tr>
<td>Cu1—O1</td>
<td>1.9511 (18)</td>
<td>C2—C3</td>
<td>1.392 (4)</td>
</tr>
<tr>
<td>Cu1—N1</td>
<td>1.984 (2)</td>
<td>C3—C4</td>
<td>1.378 (3)</td>
</tr>
<tr>
<td>Cu1—O3</td>
<td>1.9938 (18)</td>
<td>C3—H3</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu1—O4</td>
<td>2.3736 (19)</td>
<td>C4—C3</td>
<td>1.378 (3)</td>
</tr>
<tr>
<td>Cl1—O6</td>
<td>1.409 (2)</td>
<td>C4—H4</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cl1—O5</td>
<td>1.418 (2)</td>
<td>C5—C6</td>
<td>1.393 (3)</td>
</tr>
<tr>
<td>Cl1—O7</td>
<td>1.453 (2)</td>
<td>C5—H5</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cl1—O8</td>
<td>1.454 (2)</td>
<td>C6—C5</td>
<td>1.393 (3)</td>
</tr>
<tr>
<td>S1—O3</td>
<td>1.5362 (18)</td>
<td>C6—H6</td>
<td>0.9500</td>
</tr>
<tr>
<td>S1—C9</td>
<td>1.781 (3)</td>
<td>C7—H7A</td>
<td>0.9800</td>
</tr>
<tr>
<td>S1—C10</td>
<td>1.781 (3)</td>
<td>C7—H7B</td>
<td>0.9800</td>
</tr>
<tr>
<td>S2—O4</td>
<td>1.508 (2)</td>
<td>C7—H7C</td>
<td>0.9800</td>
</tr>
<tr>
<td>S2—C8</td>
<td>1.779 (3)</td>
<td>C8—H8A</td>
<td>0.9800</td>
</tr>
<tr>
<td>S2—C7</td>
<td>1.780 (3)</td>
<td>C8—H8B</td>
<td>0.9800</td>
</tr>
<tr>
<td>O1—N2</td>
<td>1.377 (3)</td>
<td>C8—H8C</td>
<td>0.9800</td>
</tr>
<tr>
<td>O2—C1</td>
<td>1.275 (3)</td>
<td>C9—H9A</td>
<td>0.9800</td>
</tr>
<tr>
<td>N1—C5</td>
<td>1.343 (3)</td>
<td>C9—H9B</td>
<td>0.9800</td>
</tr>
<tr>
<td>N1—C4</td>
<td>1.344 (3)</td>
<td>C9—H9C</td>
<td>0.9800</td>
</tr>
<tr>
<td>N2—C1</td>
<td>1.307 (3)</td>
<td>C10—H10A</td>
<td>0.9800</td>
</tr>
<tr>
<td>N2—H2N</td>
<td>0.86 (3)</td>
<td>C10—H10B</td>
<td>0.9800</td>
</tr>
<tr>
<td>C1—C2</td>
<td>1.488 (3)</td>
<td>C10—H10C</td>
<td>0.9800</td>
</tr>
<tr>
<td>O2—Cu1—O1</td>
<td>84.37 (7)</td>
<td>C3—C2—C1</td>
<td>115.1 (2)</td>
</tr>
<tr>
<td>O2—Cu1—N1</td>
<td>169.47 (8)</td>
<td>C4—C3—C2</td>
<td>119.1 (2)</td>
</tr>
<tr>
<td>O1—Cu1—N1</td>
<td>94.61 (8)</td>
<td>C4—C3—H3</td>
<td>120.4</td>
</tr>
<tr>
<td>O2—Cu1—O3</td>
<td>89.26 (7)</td>
<td>C2—C3—H3</td>
<td>120.4</td>
</tr>
<tr>
<td>O1—Cu1—O3</td>
<td>173.60 (7)</td>
<td>N1—C4—C3</td>
<td>122.3 (2)</td>
</tr>
<tr>
<td>N1—Cu1—O3</td>
<td>91.55 (8)</td>
<td>N1—C4—H4</td>
<td>118.9</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td>Angle (°)</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>O2—Cu1—O4</td>
<td>98.91 (8)</td>
<td>118.9</td>
<td></td>
</tr>
<tr>
<td>O1—Cu1—O4</td>
<td>96.45 (7)</td>
<td>122.5 (2)</td>
<td></td>
</tr>
<tr>
<td>N1—Cu1—O4</td>
<td>91.62 (8)</td>
<td>118.8</td>
<td></td>
</tr>
<tr>
<td>O3—Cu1—O4</td>
<td>85.09 (7)</td>
<td>118.8</td>
<td></td>
</tr>
<tr>
<td>O6—Cl1—O5</td>
<td>111.86 (18)</td>
<td>118.4 (2)</td>
<td></td>
</tr>
<tr>
<td>O6—Cl1—O7</td>
<td>110.69 (14)</td>
<td>120.8</td>
<td></td>
</tr>
<tr>
<td>O5—Cl1—O7</td>
<td>110.28 (13)</td>
<td>120.8</td>
<td></td>
</tr>
<tr>
<td>O6—Cl1—O8</td>
<td>108.24 (17)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>O5—Cl1—O8</td>
<td>107.77 (17)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>O7—Cl1—O8</td>
<td>107.84 (17)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>O3—S1—C9</td>
<td>103.46 (12)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>O3—S1—C10</td>
<td>105.18 (13)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>C9—S1—C10</td>
<td>98.15 (14)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>O4—S2—C8</td>
<td>107.43 (14)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>O4—S2—C7</td>
<td>106.39 (15)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>C8—S2—C7</td>
<td>97.71 (17)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>N2—O1—Cu1</td>
<td>106.32 (14)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>C1—O2—Cu1</td>
<td>110.28 (15)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>S1—O3—Cu1</td>
<td>119.96 (10)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>S2—O4—Cu1</td>
<td>134.33 (11)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>C5—N1—C4</td>
<td>118.7 (2)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>C5—N1—Cu1</td>
<td>123.69 (17)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>C4—N1—Cu1</td>
<td>117.64 (17)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>C1—N2—O1</td>
<td>118.3 (2)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>C1—N2—H2N</td>
<td>127 (2)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>O1—N2—H2N</td>
<td>115 (2)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>O2—C1—N2</td>
<td>120.1 (2)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>O2—C1—C2</td>
<td>118.3 (2)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>N2—C1—C2</td>
<td>121.6 (2)</td>
<td>109.5</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
<td>Symmetry Codes</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>C6—C2—C3</td>
<td>119.1 (2)</td>
<td>H10A—C10—H10C</td>
<td></td>
</tr>
<tr>
<td>C6—C2—C1</td>
<td>125.8 (2)</td>
<td>H10B—C10—H10C</td>
<td></td>
</tr>
</tbody>
</table>

Symmetry codes: (i) \(x+1, y, z\); (ii) \(x-1, y, z\).
Table S9. Hydrogen bonds parameters (Å, °) for 9.

<table>
<thead>
<tr>
<th>D—H···A</th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N2—H2N···O7<sup>iii</sup></td>
<td>0.86 (3)</td>
<td>2.03 (3)</td>
<td>2.890 (3)</td>
<td>177 (3)</td>
</tr>
</tbody>
</table>

Symmetry codes: (iii) x, y+1, z.
Table S10. Bond distances (Å) and angles (°) in 10.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Distance</th>
<th>Bond</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1—O2</td>
<td>1.9293 (15)</td>
<td>N2—C4</td>
<td>1.349 (3)</td>
</tr>
<tr>
<td>Cu1—O3</td>
<td>1.9602 (16)</td>
<td>N2—Cu1iii</td>
<td>1.9888 (18)</td>
</tr>
<tr>
<td>Cu1—O1</td>
<td>1.9664 (15)</td>
<td>C1—C2</td>
<td>1.479 (3)</td>
</tr>
<tr>
<td>Cu1—N2i</td>
<td>1.9888 (18)</td>
<td>C2—C6</td>
<td>1.390 (3)</td>
</tr>
<tr>
<td>Cu1—O2ii</td>
<td>2.4340 (16)</td>
<td>C2—C3</td>
<td>1.392 (3)</td>
</tr>
<tr>
<td>Cu1—O5</td>
<td>2.6693 (19)</td>
<td>C3—H3</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu1—Cu1ii</td>
<td>3.1435 (5)</td>
<td>C4—C5</td>
<td>1.379 (3)</td>
</tr>
<tr>
<td>Cl1—O8</td>
<td>1.427 (2)</td>
<td>C4—H4</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cl1—O6</td>
<td>1.432 (2)</td>
<td>C5—C6</td>
<td>1.384 (3)</td>
</tr>
<tr>
<td>Cl1—O5</td>
<td>1.4402 (19)</td>
<td>C5—H5</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cl1—O7</td>
<td>1.443 (2)</td>
<td>C6—H6</td>
<td>0.9500</td>
</tr>
<tr>
<td>S1—O3</td>
<td>1.5358 (16)</td>
<td>C7—H7A</td>
<td>0.9800</td>
</tr>
<tr>
<td>S1—C7</td>
<td>1.778 (2)</td>
<td>C7—H7B</td>
<td>0.9800</td>
</tr>
<tr>
<td>S1—C8</td>
<td>1.782 (2)</td>
<td>C7—H7C</td>
<td>0.9800</td>
</tr>
<tr>
<td>S2—O4</td>
<td>1.5178 (18)</td>
<td>C8—H8A</td>
<td>0.9800</td>
</tr>
<tr>
<td>S2—C10</td>
<td>1.779 (3)</td>
<td>C8—H8B</td>
<td>0.9800</td>
</tr>
<tr>
<td>S2—C9</td>
<td>1.791 (3)</td>
<td>C8—H8C</td>
<td>0.9800</td>
</tr>
<tr>
<td>O1—C1</td>
<td>1.281 (3)</td>
<td>C9—H9A</td>
<td>0.9800</td>
</tr>
<tr>
<td>O2—N1</td>
<td>1.378 (2)</td>
<td>C9—H9B</td>
<td>0.9800</td>
</tr>
<tr>
<td>O2—Cu1ii</td>
<td>2.4340 (16)</td>
<td>C9—H9C</td>
<td>0.9800</td>
</tr>
<tr>
<td>N1—C1</td>
<td>1.305 (3)</td>
<td>C10—H10A</td>
<td>0.9800</td>
</tr>
<tr>
<td>N1—H2N</td>
<td>0.85 (3)</td>
<td>C10—H10B</td>
<td>0.9800</td>
</tr>
<tr>
<td>N2—C3</td>
<td>1.343 (3)</td>
<td>C10—H10C</td>
<td>0.9800</td>
</tr>
<tr>
<td>O2—Cu1—O3</td>
<td>89.34 (6)</td>
<td>C1—N1—H2N</td>
<td>125.9 (18)</td>
</tr>
<tr>
<td>O2—Cu1—O1</td>
<td>83.52 (6)</td>
<td>O2—N1—H2N</td>
<td>115.4 (18)</td>
</tr>
<tr>
<td>O3—Cu1—O1</td>
<td>169.87 (6)</td>
<td>C3—N2—C4</td>
<td>118.44 (19)</td>
</tr>
<tr>
<td>O2—Cu1—N2i</td>
<td>179.30 (7)</td>
<td>C3—N2—Cu1iii</td>
<td>121.97 (15)</td>
</tr>
<tr>
<td>O3—Cu1—N2i</td>
<td>91.36 (7)</td>
<td>C4—N2—Cu1iii</td>
<td>119.53 (15)</td>
</tr>
<tr>
<td>Bond</td>
<td>Bond Length (Å)</td>
<td>Error (Å)</td>
<td>Bond</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>O1—Cu1—N2</td>
<td>95.79 (7)</td>
<td>O1—C1—N1</td>
<td>120.1 (2)</td>
</tr>
<tr>
<td>O2—Cu1—O2</td>
<td>88.56 (6)</td>
<td>O1—C1—C2</td>
<td>119.79 (19)</td>
</tr>
<tr>
<td>O3—Cu1—O2</td>
<td>92.66 (6)</td>
<td>N1—C1—C2</td>
<td>120.08 (19)</td>
</tr>
<tr>
<td>O1—Cu1—O2</td>
<td>94.33 (6)</td>
<td>C6—C2—C3</td>
<td>118.6 (2)</td>
</tr>
<tr>
<td>N2—Cu1—O2</td>
<td>91.43 (6)</td>
<td>C6—C2—C1</td>
<td>118.4 (2)</td>
</tr>
<tr>
<td>O2—Cu1—O5</td>
<td>86.15 (6)</td>
<td>C3—C2—C1</td>
<td>119.79 (19)</td>
</tr>
<tr>
<td>O3—Cu1—O5</td>
<td>87.24 (7)</td>
<td>N2—C3—C2</td>
<td>122.2 (2)</td>
</tr>
<tr>
<td>O1—Cu1—O5</td>
<td>85.12 (6)</td>
<td>N2—C3—H3</td>
<td>118.8</td>
</tr>
<tr>
<td>N2—Cu1—O5</td>
<td>93.86 (7)</td>
<td>C2—C3—H3</td>
<td>118.8</td>
</tr>
<tr>
<td>O2—Cu1—O5</td>
<td>174.71 (6)</td>
<td>N2—C4—C5</td>
<td>122.4 (2)</td>
</tr>
<tr>
<td>O2—Cu1—Cu1</td>
<td>50.72 (5)</td>
<td>N2—C4—H4</td>
<td>118.8</td>
</tr>
<tr>
<td>O3—Cu1—Cu1</td>
<td>91.65 (5)</td>
<td>C5—C4—H4</td>
<td>118.8</td>
</tr>
<tr>
<td>O1—Cu1—Cu1</td>
<td>89.38 (5)</td>
<td>C4—C5—C6</td>
<td>119.1 (2)</td>
</tr>
<tr>
<td>N2—Cu1—Cu1</td>
<td>129.27 (5)</td>
<td>C4—C5—H5</td>
<td>120.4</td>
</tr>
<tr>
<td>O2—Cu1—Cu1</td>
<td>37.85 (4)</td>
<td>C6—C5—H5</td>
<td>120.4</td>
</tr>
<tr>
<td>O5—Cu1—Cu1</td>
<td>136.86 (5)</td>
<td>C5—C6—C2</td>
<td>119.1 (2)</td>
</tr>
<tr>
<td>O2—Cu1—Cu1</td>
<td>148.50 (5)</td>
<td>C5—C6—H6</td>
<td>120.5</td>
</tr>
<tr>
<td>O3—Cu1—Cu1</td>
<td>120.97 (5)</td>
<td>C2—C6—H6</td>
<td>120.5</td>
</tr>
<tr>
<td>O1—Cu1—Cu1</td>
<td>65.28 (4)</td>
<td>S1—C7—H7A</td>
<td>109.5</td>
</tr>
<tr>
<td>N2—Cu1—Cu1</td>
<td>30.82 (5)</td>
<td>S1—C7—H7B</td>
<td>109.5</td>
</tr>
<tr>
<td>O2—Cu1—Cu1</td>
<td>97.60 (4)</td>
<td>H7A—C7—H7B</td>
<td>109.5</td>
</tr>
<tr>
<td>O5—Cu1—Cu1</td>
<td>86.96 (4)</td>
<td>S1—C7—H7C</td>
<td>109.5</td>
</tr>
<tr>
<td>Cu1—Cu1—Cu1</td>
<td>128.73 (13)</td>
<td>H7A—C7—H7C</td>
<td>109.5</td>
</tr>
<tr>
<td>O8—Cl1—O6</td>
<td>110.38 (13)</td>
<td>H7B—C7—H7C</td>
<td>109.5</td>
</tr>
<tr>
<td>O8—Cl1—O5</td>
<td>109.66 (12)</td>
<td>S1—C8—H8A</td>
<td>109.5</td>
</tr>
<tr>
<td>O6—Cl1—O5</td>
<td>109.50 (14)</td>
<td>S1—C8—H8B</td>
<td>109.5</td>
</tr>
<tr>
<td>O8—Cl1—O7</td>
<td>110.12 (14)</td>
<td>H8A—C8—H8B</td>
<td>109.5</td>
</tr>
<tr>
<td>O6—Cl1—O7</td>
<td>108.84 (13)</td>
<td>S1—C8—H8C</td>
<td>109.5</td>
</tr>
<tr>
<td>O5—Cl1—O7</td>
<td>108.31 (12)</td>
<td>H8A—C8—H8C</td>
<td>109.5</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance</td>
<td>Symmetry Code(s)</td>
<td>Angle</td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------</td>
<td>----------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>O3—S1—C7</td>
<td>102.49(11)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>O3—S1—C8</td>
<td>103.84(11)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>C7—S1—C8</td>
<td>98.83(12)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>O4—S2—C10</td>
<td>106.35(12)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>O4—S2—C9</td>
<td>105.67(12)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>C10—S2—C9</td>
<td>97.66(13)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>C1—O1—Cu1</td>
<td>108.64(14)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>N1—O2—Cu1</td>
<td>107.02(12)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>N1—O2—Cu1"</td>
<td>107.59(12)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>Cu1—O2—Cu1"</td>
<td>91.44(6)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>S1—O3—Cu1</td>
<td>122.45(10)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>Cl1—O5—Cu1</td>
<td>131.81(11)</td>
<td></td>
<td>109.5</td>
</tr>
<tr>
<td>Cl—N1—O2</td>
<td>117.88(18)</td>
<td></td>
<td>109.5</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y, −z+1; (iii) −x+1, y−1/2, −z+1/2.
Table S11. Hydrogen bonds parameters (Å, °) for 10.

<table>
<thead>
<tr>
<th></th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1—H2N···O4</td>
<td>0.85 (3)</td>
<td>1.98 (3)</td>
<td>2.752 (3)</td>
<td>152 (3)</td>
</tr>
</tbody>
</table>
Table S12. Bond distances (Å) and angles (°) in 11.

<table>
<thead>
<tr>
<th>Bond Description</th>
<th>Distance (Å)</th>
<th>Bond Description</th>
<th>Angle (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu1—O1</td>
<td>1.930 (2)</td>
<td>C3—H3</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cu1—O2</td>
<td>1.961 (2)</td>
<td>C4—C12</td>
<td>1.411 (5)</td>
</tr>
<tr>
<td>Cu1—N2</td>
<td>1.987 (3)</td>
<td>C4—C5</td>
<td>1.437 (5)</td>
</tr>
<tr>
<td>Cu1—N1</td>
<td>2.002 (3)</td>
<td>C5—C6</td>
<td>1.355 (6)</td>
</tr>
<tr>
<td>Cu1—N4'</td>
<td>2.425 (3)</td>
<td>C5—H5</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cl1—O4</td>
<td>1.399 (3)</td>
<td>C6—C7</td>
<td>1.437 (5)</td>
</tr>
<tr>
<td>Cl1—O3</td>
<td>1.410 (3)</td>
<td>C6—H6</td>
<td>0.9500</td>
</tr>
<tr>
<td>Cl1—O5</td>
<td>1.414 (4)</td>
<td>C7—C8</td>
<td>1.400 (6)</td>
</tr>
<tr>
<td>Cl1—O6</td>
<td>1.507 (4)</td>
<td>C7—C11</td>
<td>1.409 (5)</td>
</tr>
<tr>
<td>O1—N3</td>
<td>1.365 (4)</td>
<td>C8—C9</td>
<td>1.378 (6)</td>
</tr>
<tr>
<td>O2—C13</td>
<td>1.274 (4)</td>
<td>C8—H8</td>
<td>0.9500</td>
</tr>
<tr>
<td>N1—C1</td>
<td>1.327 (5)</td>
<td>C9—C10</td>
<td>1.394 (5)</td>
</tr>
<tr>
<td>N1—C12</td>
<td>1.370 (4)</td>
<td>C9—H9</td>
<td>0.9500</td>
</tr>
<tr>
<td>N2—C10</td>
<td>1.325 (5)</td>
<td>C10—H10</td>
<td>0.9500</td>
</tr>
<tr>
<td>N2—C11</td>
<td>1.358 (5)</td>
<td>C11—C12</td>
<td>1.430 (5)</td>
</tr>
<tr>
<td>N3—C13</td>
<td>1.315 (4)</td>
<td>C13—C14</td>
<td>1.486 (5)</td>
</tr>
<tr>
<td>N3—H3A</td>
<td>0.79 (4)</td>
<td>C14—C18</td>
<td>1.388 (5)</td>
</tr>
<tr>
<td>N4—C17</td>
<td>1.340 (4)</td>
<td>C14—C15</td>
<td>1.389 (5)</td>
</tr>
<tr>
<td>N4—C16</td>
<td>1.342 (5)</td>
<td>C15—C16</td>
<td>1.382 (5)</td>
</tr>
<tr>
<td>N4—Cu1''</td>
<td>2.425 (3)</td>
<td>C15—H15</td>
<td>0.9500</td>
</tr>
<tr>
<td>C1—C2</td>
<td>1.408 (5)</td>
<td>C16—H16</td>
<td>0.9500</td>
</tr>
<tr>
<td>C1—H1</td>
<td>0.9500</td>
<td>C17—C18</td>
<td>1.383 (5)</td>
</tr>
<tr>
<td>C2—C3</td>
<td>1.373 (5)</td>
<td>C17—H17</td>
<td>0.9500</td>
</tr>
<tr>
<td>C2—H2</td>
<td>0.9500</td>
<td>C18—H18</td>
<td>0.9500</td>
</tr>
<tr>
<td>C3—C4</td>
<td>1.399 (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1—Cu1—O2</td>
<td>84.23 (10)</td>
<td>C6—C5—C4</td>
<td>121.6 (4)</td>
</tr>
<tr>
<td>O1—Cu1—N2</td>
<td>94.75 (11)</td>
<td>C6—C5—H5</td>
<td>119.2</td>
</tr>
<tr>
<td>O2—Cu1—N2</td>
<td>170.88 (10)</td>
<td>C4—C5—H5</td>
<td>119.2</td>
</tr>
<tr>
<td>Bond</td>
<td>Angle</td>
<td>Bond</td>
<td>Angle</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>------------</td>
</tr>
<tr>
<td>O1—Cu1—N1</td>
<td>176.76 (11)</td>
<td>C5—C6—C7</td>
<td>121.6 (3)</td>
</tr>
<tr>
<td>O2—Cu1—N1</td>
<td>98.15 (10)</td>
<td>C5—C6—H6</td>
<td>119.2</td>
</tr>
<tr>
<td>N2—Cu1—N1</td>
<td>83.25 (12)</td>
<td>C7—C6—H6</td>
<td>119.2</td>
</tr>
<tr>
<td>O1—Cu1—N4i</td>
<td>88.68 (10)</td>
<td>C8—C7—C11</td>
<td>116.9 (3)</td>
</tr>
<tr>
<td>O2—Cu1—N4i</td>
<td>90.56 (10)</td>
<td>C8—C7—C6</td>
<td>125.3 (3)</td>
</tr>
<tr>
<td>N2—Cu1—N4i</td>
<td>98.49 (10)</td>
<td>C11—C7—C6</td>
<td>117.8 (3)</td>
</tr>
<tr>
<td>N1—Cu1—N4i</td>
<td>89.10 (10)</td>
<td>C9—C8—C7</td>
<td>120.0 (3)</td>
</tr>
<tr>
<td>O4—Cl1—O3</td>
<td>114.7 (2)</td>
<td>C9—C8—H8</td>
<td>120.0</td>
</tr>
<tr>
<td>O4—Cl1—O5</td>
<td>113.6 (2)</td>
<td>C7—C8—H8</td>
<td>120.0</td>
</tr>
<tr>
<td>O3—Cl1—O5</td>
<td>115.0 (2)</td>
<td>C8—C9—C10</td>
<td>119.2 (4)</td>
</tr>
<tr>
<td>O4—Cl1—O6</td>
<td>102.6 (3)</td>
<td>C8—C9—H9</td>
<td>120.4</td>
</tr>
<tr>
<td>O3—Cl1—O6</td>
<td>106.2 (3)</td>
<td>C10—C9—H9</td>
<td>120.4</td>
</tr>
<tr>
<td>O5—Cl1—O6</td>
<td>102.9 (3)</td>
<td>N2—C10—C9</td>
<td>122.5 (4)</td>
</tr>
<tr>
<td>N3—O1—Cu1</td>
<td>105.08 (19)</td>
<td>N2—C10—H10</td>
<td>118.8</td>
</tr>
<tr>
<td>C13—O2—Cu1</td>
<td>107.4 (2)</td>
<td>C9—C10—H10</td>
<td>118.8</td>
</tr>
<tr>
<td>C1—N1—C12</td>
<td>118.3 (3)</td>
<td>N2—C11—C7</td>
<td>122.8 (3)</td>
</tr>
<tr>
<td>C1—N1—Cu1</td>
<td>130.5 (2)</td>
<td>N2—C11—C12</td>
<td>116.6 (3)</td>
</tr>
<tr>
<td>C12—N1—Cu1</td>
<td>111.1 (2)</td>
<td>C7—C11—C12</td>
<td>120.6 (3)</td>
</tr>
<tr>
<td>C10—N2—C11</td>
<td>118.7 (3)</td>
<td>N1—C12—C4</td>
<td>123.1 (3)</td>
</tr>
<tr>
<td>C10—N2—Cu1</td>
<td>129.2 (3)</td>
<td>N1—C12—C11</td>
<td>116.5 (3)</td>
</tr>
<tr>
<td>C11—N2—Cu1</td>
<td>112.0 (2)</td>
<td>C4—C12—C11</td>
<td>120.4 (3)</td>
</tr>
<tr>
<td>C13—N3—O1</td>
<td>119.2 (3)</td>
<td>O2—C13—N3</td>
<td>119.5 (3)</td>
</tr>
<tr>
<td>C13—N3—H3A</td>
<td>129 (3)</td>
<td>O2—C13—C14</td>
<td>120.4 (3)</td>
</tr>
<tr>
<td>O1—N3—H3A</td>
<td>111 (3)</td>
<td>N3—C13—C14</td>
<td>120.2 (3)</td>
</tr>
<tr>
<td>C17—N4—C16</td>
<td>117.2 (3)</td>
<td>C18—C14—C15</td>
<td>118.2 (3)</td>
</tr>
<tr>
<td>C17—N4—Cu1i</td>
<td>121.9 (2)</td>
<td>C18—C14—C13</td>
<td>116.9 (3)</td>
</tr>
<tr>
<td>C16—N4—Cu1i</td>
<td>119.7 (2)</td>
<td>C15—C14—C13</td>
<td>125.0 (3)</td>
</tr>
<tr>
<td>N1—C1—C2</td>
<td>122.1 (3)</td>
<td>C16—C15—C14</td>
<td>118.8 (3)</td>
</tr>
<tr>
<td>N1—C1—H1</td>
<td>118.9</td>
<td>C16—C15—H15</td>
<td>120.6</td>
</tr>
</tbody>
</table>

S27
<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (°)</th>
<th>Symmetry Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2—C1—H1</td>
<td>118.9</td>
<td>C14—C15—H15</td>
</tr>
<tr>
<td>C3—C2—C1</td>
<td>119.6 (4)</td>
<td>N4—C16—C15</td>
</tr>
<tr>
<td>C3—C2—H2</td>
<td>120.2</td>
<td>N4—C16—H16</td>
</tr>
<tr>
<td>C1—C2—H2</td>
<td>120.2</td>
<td>C15—C16—H16</td>
</tr>
<tr>
<td>C2—C3—C4</td>
<td>120.0 (3)</td>
<td>N4—C17—C18</td>
</tr>
<tr>
<td>C2—C3—H3</td>
<td>120.0</td>
<td>N4—C17—H17</td>
</tr>
<tr>
<td>C4—C3—H3</td>
<td>120.0</td>
<td>C18—C17—H17</td>
</tr>
<tr>
<td>C3—C4—C12</td>
<td>116.8 (3)</td>
<td>C17—C18—C14</td>
</tr>
<tr>
<td>C3—C4—C5</td>
<td>125.2 (4)</td>
<td>C17—C18—H18</td>
</tr>
<tr>
<td>C12—C4—C5</td>
<td>117.9 (4)</td>
<td>C14—C18—H18</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) \(-x+1/2, y+1/2, z\); (ii) \(-x+1/2, y-1/2, z\).
Table S13. Hydrogen bonds parameters (Å, °) for 11.

<table>
<thead>
<tr>
<th></th>
<th>D—H</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>N3—H3A···O5<sup>iii</sup></td>
<td>0.79 (4)</td>
<td>2.11 (4)</td>
<td>2.844 (5)</td>
<td>155 (4)</td>
</tr>
</tbody>
</table>

Symmetry codes: (iii) x−1/2, −y+1/2, −z+1.
Figure S1. Unit cell in [Cu(3-HPicHA)$_2$(ClO$_4$)$_2$] (1).

Figure S2. Packing diagram for \textit{catena}-[Cu(3-PicHA)(phen)]$_n$(ClO$_4$)$_n$ (7)
Figure S3. Structure of monomeric fragment of the coordination polymer \textit{catena-}[Cu(4-PicHA)(bpy)]\textsubscript{n}(OH)\textsubscript{n}·3.25nH\textsubscript{2}O (8).

Figure S4. Mutual disposition of the polymeric chains conoformers in \textit{catena-}[Cu(4-PicHA)(bpy)]\textsubscript{n}(OH)\textsubscript{n}·3.25nH\textsubscript{2}O (8).
Figure S5. Temperature dependence of $\chi_M T$ product for $\{\text{Cu(4-HPicHA)(bpy)(ClO}_4\}_2]\text{(ClO}_4\}_2$ (4a).
Figure S6. Temperature dependences of χ_M^{-1} (top) and effective magnetic moment per one copper(II) ion (bottom) for catena-$[\text{Cu(3-PicH\AA)(phen)}]_n(\text{ClO}_4)_n$ (7).
Figure S7. Temperature dependences of χ_M^{-1} (top) and effective magnetic moment per one copper(II) ion (bottom) for catena-[Cu(4-PicH1A)(bpy)]$_n$(OH)$_n$·3.25nH$_2$O (8).
Figure S8. Temperature dependences of χ_M^{-1} for catena-[Cu(4-PicHA)(DMSO)$_2$]$_{2n}$(ClO$_4$)$_{2n}$ (9).

Figure S9. Temperature dependences of χ_M^{-1} for [Cu(3-PicHA)(DMSO)(ClO$_4$)]$_{nm}^\cdot$nmDMSO (10).
Figure S10. Temperature dependences of χ_M^{-1} (top) and effective magnetic moment per one copper(II) ion (bottom) for $\left\{\text{Cu(4-PicHA)(phen)}\right\}_n(\text{ClO}_4)_2n$ (11).