Supporting Information

Formation mechanism of ZnS impurities and their effect on photoelectrochemical properties on a Cu₂ZnSnS₄ photocathode

Zhongjie Guan^a, Wenjun Luo^{*b}, Zhigang Zou^{*bc}

^a College of Engineering and Applied Science, Nanjing University, Nanjing 210093, China.

^b Eco-materials and Renewable Energy Research Center, National Laboratory of Solid State

Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China.

^cKunshan Innovation Institute of Nanjing University, Kunshan 215347, China

*To whom correspondence should be addressed, E-mail: wjluo@nju.edu.cn, zgzou@nju.edu.cn

Fig. S1 SEM-EDS elemental maps of Sample r-1.2 and r-0.6.

Fig. S2 (a) Visible and (b) UV Raman spectra of CZTS without sulfur annealing with Zn/Sn precursor ratio of 1.2 prepared with different reaction time (10 min, 30min and 120min) in the mixture solution.

Fig. S3 An energy band diagram of CZTS in aqueous solution.

Fig. S4 Cross-sectional SEM images of the as-annealed CZTS thin films prepared with different Zn/Sn precursor ratios.

Table S1 Chemical composition of the as-annealed CZTS thin films prepared with different reaction time in the mixture solution measured by EDS.

Reaction time	Chemical compositon of CZTS after annealing					
(minutes)	Zn/Sn=0.6			Zn/Sn=1.2		
	Cu/Zn+Sn	Zn/Sn	S/metal	Cu/Zn+Sn	Zn/Sn	S/metal
10	0.67	1.67	1.11	0.65	1.90	1.12
30	0.85	1.10	0.97	0.79	1.81	1.12
120	0.87	1.07	1.07	0.77	1.80	1.08