Supporting Information for

In-situ fabrication of Cu$_2$ZnSnS$_4$(Se$_4$) nanoflake thin films on both rigid and flexible substrates

Xuezhen Zhai1,2, Huimin Jia1, Yange Zhang1, Yan Lei1, Jie Wei1,2, Yuanhao Gao1, Junhao Chu2, Weiwei He1,3, Jun-jie Yin3, Zhi Zheng1*

1Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province and Institute of Surface Micro and Nano Materials, Xuchang University Henan 461000, China

2Key Laboratory of Polar Materials and Devices, Ministry of Education. Department of Electronics, East China Normal University. 500 Dongchuan Road, Shanghai 200241, China

3Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA

Corresponding Authors: E-mail: zhengzhi99999@gmail.com
zzheng@xcu.edu.cn
Figure. S1 XRD patterns of the CZTS nanocrystalline thin films samples prepared for 18 h at 250 °C on stainless steel substrates. The thicknesses of CuSnZn alloy layers were 100 nm~400 nm.
Figure. S2 Raman spectra of the CZTS nanocrystalline thin films samples prepared for 18 h at 250 °C on stainless steel substrates. The thicknesses of CuSnZn alloy layers are 100 nm–400 nm.

Figure. S3 XRD patterns of the CZTSe nanocrystalline thin films samples prepared at 230–270°C for 18 h on stainless steel substrates. The thickness of CuSnZn alloy layer is 400 nm.
Figure S4 XRD patterns of the CZTSe nanocrystalline thin films samples prepared for 18h~24h at 250 °C on stainless stell substrates. The thickness of CuSnZn alloy layer is 400nm.
Figure S5 Raman spectra of the CZTSe nanocrystalline thin films samples prepared for 18 h and 24 h at 250 °C on FTO substrates.

Figure S6 UV-vis-NIR absorption spectra of the CZTS thin film prepared at 230°C, 240°C and 250°C for 18 h (a) and the corresponding $(\alpha h\nu)^2$ vs. $h\nu$ curve (b).

Figure S7 UV-vis-NIR absorption spectra of the CZTS thin film prepared at 250°C for 6 h, 18 h and 24 h (a) and the corresponding $(\alpha h\nu)^2$ vs. $h\nu$ curves (b).
Figure S8 SEM images of the original and solvothermal treated alloy surface.