Morphology control and temporal growth of continuous silver shell on core–shell spheres

Won Gyun Choe,a,b Do Youb Kimc and O Ok Park*a

a Department of Chemical and Biomolecular Engineering (BK21+ graduate program), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea,

b R&D Center, Korea Minting, Security Printing & ID Card Operating Corp. (KOMSCO), 80-67 Gwahak-ro, Yuseong-gu, Daejeon 305-713, Republic of Korea,

c Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Republic of Korea.

\textit{*E-mail: oopark@kaist.ac.kr}
Fig. S1 SEM images of the Fe@TiO$_2$@Ag core–shell spheres obtained in the absence of trisodium citrate. The reaction condition was identical with those shown in Fig. 2a.
Fig. S2 Schematic diagram and practical evidence of Ag shell as a mirror: (a) ideal case as a perfect mirror, (b) non-ideal case by electroless deposition leading to low reflectance, and (c) SEM images of typical defects of Ag shell, void defect and low profile defect, respectively.
Fig. S3 SEM images of the Fe@TiO$_2$@Ag core–shell spheres showing temporal growth of Ag shell at different concentrations of the trisodium citrate: (a-c) with 0.45 mM of the trisodium citrate, taken at 10 s, 30 s, and 7 min, respectively, (d-f) with 1.80 mM of the trisodium citrate, taken at 10 s, 30 s, and 7 min, respectively. Insets show corresponding low magnification images of each resultant sphere.