Supplementary Information
for
Crystal form selectivity by humidity control: the case of the ionic co-crystals of nicotinamide and CaCl₂

Dario Braga, Fabrizia Grepioni, Giulio I. Lampronti, Lucia Maini, Katia Rubini, Federico Zorzi, Alessandro Turrina

TGA measurements.
Despite all attempts to obtain pure compounds, the TGA curves suggests the presences of a small amount of CaCl₂ XH₂O. It is known that the dehydration process of CaCl₂ XH₂O strongly depends on the heating rate and a recent study shows that at ~142°C there is a complete conversion of CaCl₂ 6H₂O to the anhydrous form.¹
In figure S.I.1 the small step between 90-130°C could be ascribed to the release of water due to the presence of small percentage of CaCl₂ XH₂O not detectable by X-ray diffraction, while step between 130°C to 200°C the release of the crystallization water molecule of Nic·CaCl₂·H₂O (calc 7.16% obs. 6.59%) and the formation of the anhydrous form. At 250°C the decomposition occurred.
The variable temperature XRD shows no changes in the pattern between 90°C-130°C also after the sample was kept at 100°C for 1 hour (see figure S.I. 2)

Figure S1 1. TGA curves of Nic·CaCl₂·H₂O. Sample obtained by kneading CaCl₂ anhydrous and Nicotinamide with 1 drop of ethanol. The sample was kept at 75°C for at least 1 hour to remove adsorbed water. The first step between 90°C-140°C is ascribable to the release of water due to the presence of CaCl₂·xH₂O.
Nic·CaCl₂·H₂O loses three water molecules before 90°C. After this temperature the thermogram is comparable to that one observed for Nic·CaCl₂·H₂O; also in this case there is a step between 90°-130°C due to the presence of a small percentage of CaCl₂·XH₂O (Figure S.I. 3).

Rietveld refinements of patterns collected on powders exposed to different RH

Rietveld refinement of the diffractogram collected on the sample of Nic·CaCl₂ after been exposed to HR 12% for two weeks (θ range 5-40°, step size 0.02°, time/step 20 s, 0.04 rad soller, kVxmA 40x40). The pattern has been described by two crystalline phases: Nic·CaCl₂ and Nic·CaCl₂·H₂O. The refinement converged to $R_{wp} = 8.635\%$ and $\chi^2 = 1.734$ values.
Figure S.I. 4 Experimental (black dots), calculated (red line) and difference (grey line) patterns for Nic·CaCl$_2$·H$_2$O (black line) after two weeks at 12% RH. Peak positions are marked in red and green for Nic·CaCl$_2$ and Nic·CaCl$_2$·H$_2$O respectively.

Rietveld refinement of the diffractogram collected on the sample of Nic·CaCl$_2$ after been exposed to HR 53% for two weeks (20 range 5-40°, step size 0.02°, time/step 20 s, 0.04 rad soller, kVxmA 40x40). The pattern has been modelled using three phases: Nic·CaCl$_2$·H$_2$O, triclinic CaCl$_2$·4H$_2$O and trigonal CaCl$_2$·2H$_2$O. The refinement converged to $R_{wp} = 8.777\%$ and $\chi^2 = 1.426$ values.

Figure S.I. 5 Experimental (black dots), calculated (red line) and difference (grey line) patterns for Nic·CaCl$_2$·H$_2$O (black line) after two weeks at 54% RH. Peak positions are marked in red, green and blue for Nic$_2$·CaCl$_2$·2H$_2$O, CaCl$_2$·4H$_2$O and CaCl$_2$·2H$_2$O respectively.