Supplementary Information

Photoluminescent 3D lanthanide MOFs with a rare (10, 3)-d net based on a new tripodal organic linker

Qing-Yuan Yang a, Mei Pan a,c,*, Shi-Chao Wei a, Chien-Wei Hsu b, Jean-Marie Lehn b and Cheng-Yong Su a,*

a MOE Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, Lehn Institute of Functional Materials, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China
panm@mail.sysu.edu.cn; cesscy@mail.sysu.edu.cn

b Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 allée Gaspard Monge, Strasbourg 67000, France

c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China

Figure S1. Phosphorescence spectrum of complex 5 (Gd) under excitation at 370 nm; T = 77 K.
Figure S2. UV-vis absorption spectra of ligand L1 at room temperature (5×10^{-5} mol/l, methanol).

Table S1. Selected bond distances (Å) and angles (°) for complex 2.

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Distance/Angle</th>
<th>Distance/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb(1)-O(1)</td>
<td>2.250(5)</td>
<td>Tb(1)-O(3)#1</td>
</tr>
<tr>
<td>Tb(1)-O(9)</td>
<td>2.452(5)</td>
<td>Tb(1)-O(12)</td>
</tr>
<tr>
<td>Tb(1)-O(11)</td>
<td>2.519(5)</td>
<td>Tb(1)-O(5)</td>
</tr>
<tr>
<td>O(1)-Tb(1)-O(3)#1</td>
<td>81.15(18)</td>
<td>O(1)-Tb(1)-O(2)#2</td>
</tr>
<tr>
<td>O(1)-Tb(1)-O(9)</td>
<td>130.57(17)</td>
<td>O(3)#1-Tb(1)-O(2)#2</td>
</tr>
<tr>
<td>O(1)-Tb(1)-O(12)</td>
<td>145.86(16)</td>
<td>O(2)#2-Tb(1)-O(9)</td>
</tr>
<tr>
<td>O(9)-Tb(1)-O(12)</td>
<td>79.73(16)</td>
<td>O(1)-Tb(1)-O(6)</td>
</tr>
<tr>
<td>O(2)#2-Tb(1)-O(6)</td>
<td>127.37(16)</td>
<td>O(9)-Tb(1)-O(6)</td>
</tr>
<tr>
<td>O(1)-Tb(1)-O(11)</td>
<td>144.86(18)</td>
<td>O(3)#1-Tb(1)-O(11)</td>
</tr>
<tr>
<td>O(9)-Tb(1)-O(11)</td>
<td>69.75(16)</td>
<td>O(12)-Tb(1)-O(11)</td>
</tr>
<tr>
<td>O(1)-Tb(1)-O(5)</td>
<td>73.84(18)</td>
<td>O(3)#1-Tb(1)-O(5)</td>
</tr>
<tr>
<td>O(9)-Tb(1)-O(5)</td>
<td>123.60(16)</td>
<td>O(12)-Tb(1)-O(5)</td>
</tr>
<tr>
<td>O(1)-Tb(1)-O(4)</td>
<td>147.74(17)</td>
<td>O(1)-Tb(1)-O(4)</td>
</tr>
<tr>
<td>O(7)-Tb(1)-O(4)</td>
<td>83.43(17)</td>
<td>O(5)-Tb(1)-O(4)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: #1, -x+1, -y+2, z+1/2; #2, -x+1/2, y-1/2, z+1/2.

Table S2. Selected bond distances (Å) and angles (°) for complex 4.

<table>
<thead>
<tr>
<th>Bond/Angle</th>
<th>Distance/Angle</th>
<th>Distance/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce(1)-O(1)</td>
<td>2.329(5)</td>
<td>Ce(1)-O(2)#1</td>
</tr>
<tr>
<td>Ce(1)-O(7)</td>
<td>2.582(5)</td>
<td>Ce(1)-O(5)</td>
</tr>
<tr>
<td>Ce(1)-O(4)</td>
<td>2.610(5)</td>
<td>Ce(1)-O(8)</td>
</tr>
<tr>
<td>O(1)-Ce(1)-O(2)#1</td>
<td>80.0(2)</td>
<td>O(1)-Ce(1)-O(3)#2</td>
</tr>
<tr>
<td>O(1)-Ce(1)-O(7)</td>
<td>126.98(18)</td>
<td>O(2)#1-Ce(1)-O(3)#2</td>
</tr>
<tr>
<td>O(1)-Ce(1)-O(4)</td>
<td>143.0(2)</td>
<td>O(2)-Ce(1)-O(7)</td>
</tr>
<tr>
<td>O(7)-Ce(1)-O(5)</td>
<td>71.30(17)</td>
<td>O(2)-Ce(1)-O(5)</td>
</tr>
<tr>
<td>O(3)#2-Ce(1)-O(10)</td>
<td>124.80(17)</td>
<td>O(7)-Ce(1)-O(10)</td>
</tr>
<tr>
<td>O(1)-Ce(1)-O(4)</td>
<td>147.74(17)</td>
<td>O(2)-Ce(1)-O(4)</td>
</tr>
<tr>
<td>O(7)-Ce(1)-O(4)</td>
<td>83.43(17)</td>
<td>O(5)-Ce(1)-O(4)</td>
</tr>
<tr>
<td>O(1)-Ce(1)-O(8)</td>
<td>78.64(17)</td>
<td>O(2)-Ce(1)-O(8)</td>
</tr>
<tr>
<td>Bond</td>
<td>Length</td>
<td>Bond</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>O(7)-Ce(1)-O(8)</td>
<td>49.33(16)</td>
<td>O(5)-Ce(1)-O(8)</td>
</tr>
<tr>
<td>O(4)-Ce(1)-O(8)</td>
<td>127.32(15)</td>
<td>O(1)-Ce(1)-O(11)</td>
</tr>
<tr>
<td>O(3)#2-Ce(1)-O(11)</td>
<td>78.75(17)</td>
<td>O(7)-Ce(1)-O(11)</td>
</tr>
<tr>
<td>O(10)-Ce(1)-O(11)</td>
<td>47.92(15)</td>
<td>O(4)-Ce(1)-O(11)</td>
</tr>
</tbody>
</table>

Symmetry transformations used to generate equivalent atoms: #1, -x,-y, z+1/2; #2, -x+1/2, y-1/2, z+1/2.

References

