Electronic Supplementary Information (ESI)

Evolution of ZnO microstructures from hexagonal disk to prismoid, prism and pyramid and their crystal facet-dependent gas sensing properties

Nan Qin*, Qun Xiang*, Hongbin Zhao, Jincang Zhang, Jiaqiang Xu

a Department of Physics, College of Science, Shanghai University, Shanghai, 200444, China

b NEST Lab, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China. Tel.: +86 21 66132701; E-mail: xujiaqiang@shu.edu.cn

c State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
Gas concentration calculation

To obtain the desired gas concentration, injection volume of the gas or liquid can be calculated as follow:

When the test target is gas:

$$V_x = V \times C \times 10^{-6} \times \frac{273 + T_r}{273 + T_c}$$ \hspace{1cm} (1)

When the test target is liquid vapor:

$$V_x = \frac{V \times C \times M}{22.4 \times d \times p} \times 10^{-9} \times \frac{273 + T_r}{273 + T_c}$$ \hspace{1cm} (2)

where V_x is the injection volume (ml), V is the test chamber volume (ml), C is the gas or liquid vapor concentration (ppm), M is the liquid mole mass (g/mol), d is the liquid specific gravity (g/cm3), p is the liquid purity, T_r is the room temperature (°C) and T_c is the chamber temperature (°C).
Gas sensing properties of the sensors

\[\text{O}_2 \text{(gas)} \leftrightarrow \text{O}_2 \text{(adsorbed)} \]
\[\text{O}_2 \text{(ads)} + e^- \leftrightarrow \text{O}^- \text{(ads)} \]
\[\text{O}^- \text{(ads)} + e^- \leftrightarrow 2\text{O}^- \text{(ads)} \]
\[\text{O}^- \text{(ads)} + e^- \leftrightarrow \text{O}_2^- \text{(ads)} \]
\[\text{V}_\text{O} + \text{O}_2 \text{(g)} \leftrightarrow \text{O}_2^- \text{(ads)} + \text{V}_\text{O}^- \]
\[\text{V}_\text{O} + \text{O}_2 \text{(g)} \leftrightarrow \text{O}_2^- \text{(ads)} + \text{V}_\text{O}^- \leftrightarrow 2\text{O}^- + 2\text{V}_\text{O}^- \]

wherein “g” and “ads” refer to gas and adsorbate, \(\text{V}_\text{O} \) oxygen vacancy, and \(\text{V}_\text{O}^- \) single electropositive oxygen vacancy.

In addition, \(\text{C}_2\text{H}_5\text{OH} \) gas can be either dehydrated at the surface of acidic oxide:

\[\text{C}_2\text{H}_5\text{OH} \text{(g)} \rightarrow \text{C}_2\text{H}_4 \text{(g)} + \text{H}_2\text{O} \text{(g)} \]

or dehydrogenated at the surface of basic oxide:

\[\text{C}_2\text{H}_5\text{OH} \text{(g)} \rightarrow \text{CH}_3\text{CHO} \text{(g)} + \text{H}_2 \text{(g)} \]

Since ZnO is a basic metal oxide, the catalytic oxidation of \(\text{C}_2\text{H}_5\text{OH} \) on the ZnO surface will happen according to Eq. 10. The sequent gas sensing reaction is shown in Eq. 11:

\[\text{CH}_3\text{CHO} \text{(ads)} + 5\text{O}^- \text{(ads)} \rightarrow 2\text{CO}_2 + 2\text{H}_2\text{O} + 5e^- \]

When the sensor is exposed to the other gases:

\[\text{H}_2 \text{(ads)} + \text{O}^- \text{(ads)} \rightarrow \text{H}_2\text{O} + e^- \]
\[\text{CH}_3\text{OH} \text{(ads)} + 3\text{O}^- \text{(ads)} \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} + 3e^- \]
\[\text{HCHO} \text{(ads)} + 2\text{O}^- \text{(ads)} \rightarrow \text{CO}_2 + \text{H}_2\text{O} + 2e^- \]