Hydrothermal growth of ZnO nanorods on Zn substrates and their application in degradation of azo dyes under ambient conditions

Xiaoyan Cai, Bingqian Han, Shaojuan Deng, Yan Wang, Chengjun Dong, Yude Wang, and Igor Djerdj

Department of Materials Science & Engineering, Yunnan University, 650091 Kunming, People’s Republic of China

State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, People’s Republic of China

Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
**Fig. S1**  SEM images of ZnO nanorod arrays: (a) Z-5; (b) Z-6.
**Fig. S2** HRTEM images of the nanorods at the tip ((a) Z-1, (d) Z-4) and the side ((b) Z-2, (c) Z-3). The inserts are whole view of the tops, and electron diffraction patterns from the nanorods show the same growth direction of [0001].
**Fig. S3** The comparative degradation rate of azo dyes with different concentration ($10^{-5}$ M, $10^{-4}$ M and greater than $10^{-4}$ M) under dark condition in the presence of sample Z-1, Z-2, Z-3 and Z-4 (2cm×2cm): (a) CR (40 mL); (b) MO (40 mL).
**Fig. S4** Cycling runs in the catalytic degradation rate of azo dyes under dark condition in the presence of sample Z-1, Z-2, Z-3 and Z-4 (2cm×2cm): (a) CR (10⁻⁵ M, 40 mL); (b) MO (10⁻⁵ M, 40 mL); (c) CR (10⁻⁴ M, 40 mL); (d) MO (10⁻⁴ M, 40 mL).
Fig. S5 High-resolution XPS spectra of O 1s of the sample Z-1 and Z-3 before ((a) Z-1, (c) Z-3) and after ((b) Z-1, (d) Z-3) degradation of 5 cycling runs under dark condition, respectively.